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ABSTRACT
Home voice assistants (VA) like Amazon Echo and Google Home
have gained popularity due to the ease of controlling devices through
voice commands. VAs continuously listen to detect the wake word
and send the subsequent audio data to the manufacturer-owned
cloud service to interpret the commands. However, studies have
revealed that imperfect voice recognition can lead to unintentional
activations when similar-sounding words are spoken in the back-
ground. Existing privacy controls are not effective in preventing
such misactivations. Recent studies have shown that the visual gaze
plays an important role when interacting with conversation agents
such as VAs, and users tend to turn their heads or body towards
the VA when invoking it. In this study, we propose a device-free,
non-obtrusive acoustic sensing system called HeadTalk to thwart
the misactivation of VAs. The proposed system leverages the user’s
head direction information and verifies that a human generates the
sound to minimize accidental activations.

1 INTRODUCTION
Voice-controlled speakers like Amazon Echo and Google Home
have become increasingly pervasive due to the convenience they
provide. Voice assistants (VAs) keep listening to detect the wake
command (e.g., “Alexa" ) and send the subsequent voice command
to the manufacturer-owned cloud service for processing to identify
actionable commands. However, the always-listening nature of
voice assistants gives rise to security and privacy concerns [1]. For
example, VAs can misactivate either accidentally due to suboptimal
wake-word recognition engine or artificially by manipulating the
pronunciation of the wake word [2]. In addition, with more and
more devices integrating voice-assistant-like capabilities (e.g., smart
TVs), multiple VAs will likely share the same physical space, which
can lead to misactivating the wrong VAs. Existing privacy controls
for VAs include: usage of different safewords, physical mute button,
and access to the command history. However, such privacy controls
are not effective as safewords can also lead to misactivations [2].
Furthermore, while users are aware of the ability to review audio
logs and mute their smart speaker, Study [3] has shown that users
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Figure 1: HeadTalk privacy control.

do not use such privacy-enhancing features for multiple reasons.
Due to the limitation of existing privacy controls for VAs, more
device-free privacy controls are needed.

Recent studies have shown that visual gaze [4] plays an important
role when interacting with VAs. They also found that participants
rated the overall user experience to be higher when they could
view the VA as opposed to not seeing it as visual cues increased
their confidence in the VA’s response. Leveraging such insights, we
develop a device-free, non-obtrusive acoustic sensing system called
HeadTalk to thwart the misactivation of VAs in this paper. Figure 1
shows our proposed privacy control for VAs. In addition to the
mute button, which fully disables the VA function, users can select
HeadTalk mode through voice command (e.g., by saying “Alexa,
enter HeadTalk mode").HeadTalk only accepts the given wake word
when it is spoken facing the VA. Once the wake word is detected
while facing forward, the user does not need to continuously face
the device for the remaining session. If the user faces backward,
the VA will not record and transmit audio data to the cloud service,
but the smart speaker will still be functional (e.g., streaming music
or news). In this way, we can essentially implement a soft mute
operation while still enabling the speaker to function.

We are the first to propose a speaker-orientation-based privacy
control for VAs while processing the wake word. We show that
speech alone can be used as a directional communication channel,
in much the same way visual gaze specifies a focus. We implement
HeadTalk using a commercial off-the-shelf (COTS) speaker and
collect data under various real-world settings covering both a lab
setting and a real-home setting.

2 SYSTEM OVERVIEW
As shown in Figure 2, HeadTalk is comprised of two main compo-
nents, including Liveliness Detection (shown in green color) and
Speaker Orientation Detection (shown in gray color). The Prepossess-
ing block captures the wake command, removes noise, and outputs
as denoised audio. The Feature Extraction block takes the denoised
audio as input and extracts features for liveliness detection and
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speaker orientation detection, respectively. Next, if the speech com-
mand is identified to originate from a mechanical speaker, HeadTalk
will reject the command and remain in ‘mute mode’. If it is clas-
sified as human speech, then the human speaker’s orientation is
determined to evaluate whether the human speaker is facing and
not facing the VA. If the speech command is identified as facing,
HeadTalk will accept the command and upload it to the correspond-
ing cloud service for further processing.

Figure 2: System Overview for HeadTalk
Threat Model. Our threat model covers two possible scenarios: 1)
accidental misactivation through audio broadcasts (e.g., smart TVs
streaming media such as TV shows and news) or people chatting in
the background; 2) we also consider a more active attack scenario
where the adversary can compromise/control a media device to
replay in the same physical location as the VA.

2.1 Speaker Orientation Estimation
Figure 3a shows a person’s horizontal Field-of-View (FoV). Consid-
ering the human eye or mouth as the centerline, the 15◦ on both
sides of the centerline is considered as the preferred viewing area
[5], where human vision is most sensitive. 35◦ on both sides of
the centerline is referred to as the immediate FoV that represents
the maximum angle where both eyes can observe an object simul-
taneously. Figure 3 shows that a sound source has directivity in
its spatial radiation. The power energy is highest when directly
facing the device at 0 degree. The incoming acoustic signal will
most likely change with changes in the orientation of the sound
source. Based on the human FoV and speech directivity, we define
the angles within the range of −30◦ to 30◦ as the forward-facing
orientation while the range of −90◦ to 90◦ as the non-facing orien-
tation. Like ‘blind spots’ that a driver cannot see without turning
his/her head around, we define arcs that are hard to determine
when the speaker’s head is facing a specific angle. We consider the
arc of −90◦ to −30◦ and 30◦ to 90◦ as the "blind zone". As a human
head can turn as much as 90◦, the speaker can easily turn his/her
head toward the facing zone to activate the device.

When a user speaks towards a device, the direct path from the
mouth to the device is the loudest and least-distorted, whereas
all other reflected signals are delayed, lower power, and more dis-
torted. In addition, the higher frequency acoustic signals are more
directional, carrying the most significant amplitude in their emit-
ted direction, while lower frequency components spread out in a
more omnidirectional fashion. Therefore, We extract such speech
reverberation and directivity features to estimate a speaker’s head
orientation.

3 EXPERIMENT RESULT
We implement HeadTalk using a 6-channel Seeed’s ReSpeaker Core
V2.0 [6] and record raw audio at 48 kHz. Most recently speech repre-
sentation learning networks such as wav2vec2 [7] have shown their

(a) Human FoV (b) Proposed field of sound

Figure 3: The power distribution of human speech alignswith human
FoV. (a) Human FoV; (b) Our proposed field of sound.

advantage in speech recognition and speaker recognition. We use
the SpeechBrain library and ASVSpoof 2019 physical access dataset
to train our wav2vec2 model to distinguish human speakers from
mechanical speakers. We use the default ASVSpoof 2019 dataset
splits and train the network for 20 epochs. The accuracy was 98.56%
(EER 3.36%) and 98.52% (EER 3.90%) for the validation and test
dataset. Next, we evaluate performance using our samples of live-
human speech (i.e., ”Computer" utterance) and samples of replayed
audio through a Sony speaker. We use the previously trained model
to test the unseen samples and get 84.87% accuracy (EER 16.50%).
We, therefore, adopt an incremental learning approach to create a
better-generalized classifier, where we split the unseen samples into
the following train, validation, and test datasets (20:20:60). After
retraining on the 20% new training data, we get 98.61% accuracy
(EER 1.76%) and 98.68% accuracy (EER 2.58%) for the validation
and test dataset, respectively, with just 10 epochs of training. To
detect speaker orientation, we use the implementation of support
vector machine (SVM) and select the best complexity parameter
for Radial Basis Function (RBF) through grid search. We evaluated
HeadTalk covering three wake words (e.g., "Hey Assistant!", "Com-
puter" and "Amazon") in two room settings (e.g., lab and home),
and showed that it could achieve an average accuracy of 96% to
detect the speaker orientation. We believe this simple yet effec-
tive head orientation-based privacy control can help consumers
better protect sensitive operations carried out by voice assistants.
Our proposed approach has the potential to make distributed voice
interactions more practical and privacy-preserving.
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