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Abstract
Perception-reaction time (PRT) and deceleration rate are two key components in geometric design of highways and streets.
Combined with a design speed, they determine the minimum required stopping sight distance (SSD). Current American
Association of Highway Transportation Officials (AASHTO) SSD guidance is based on 90th percentile PRTand 10th percentile
deceleration rate values from experiments completed in the mid-1990s. These experiments lacked real-world distractions,
and so forth. Thus, the values from these experiments may not be applicable in real-world scenarios. This research evaluated
(1) differences in PRTs and deceleration rates between crash and near-crash events and (2) developed predictive models for
PRT and deceleration rate that could be used for roadway design. This was accomplished using (1) genetic matching (with
Rosenbaum’s sensitivity analysis) and (2) quantile regression. These methods were applied to the Strategic Highway Research
Program 2 (SHRP2) Naturalistic Driving Study (NDS) data.
The analysis results indicated that there were differences in PRT and deceleration rates for crash and near-crash events. The
specific estimates were that, on average, drivers involved in crash events took 0.487 s longer to react and decelerated at
0.018 g’s (0.58 ft/s2) slower than drivers in equivalent near-crashes. Prediction models were developed for use in roadway
design. These models were used to develop tables comparing existing SSD design criteria with SSD criteria based on the
results of the predictive models. These predicted values indicated that minimum design SSD values would increase by 10.5–
129.2 ft, dependent on the design speed and SSD model used.

Providing a safe and efficient surface transportation sys-
tem for users is the core objective of the geometric design
process. To facilitate this, design criteria have been devel-
oped and adopted by transportation agencies. Stopping
sight distance (SSD) is considered a fundamental street
design criterion that is necessary for safe roadway design
(1–3). It is one of the Federal Highway Administration’s
(FHWA) controlling criteria, underscoring its importance
among geometric design elements (4, 5).

The American Association of State Highway and
Transportation Officials’ (AASHTO) Policy on
Geometric Design of Highways and Streets (here referred
to as the Green Book) specifies minimum SSD design
values as a function of the design speed (6). The Green
Book states that the sight distance available to drivers
should be at least as great as the minimum SSD for the
given design speed at all points along the roadway. The
minimum SSD in the Green Book is defined as the dis-
tance it takes for a driver to apply the brakes once an

object on the roadway is visible (perception-reaction dis-
tance) and then the braking distance to stop (6).
Minimum SSD values also often control the minimum
values for other design criteria, such as horizontal sight-
line offsets (HSO) and vertical alignment design ele-
ments, such as the length of a vertical curve.

The current Green Book SSD model is shown in
Equation 1 (6, 7).

SSD=Vtr +
V 2
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where
SSD= minimum stopping sight distance (ft),
tr = perception-reaction time (2.5 s),
V = velocity of the vehicle (i.e., the selected design
speed in ft/s),
g = acceleration because of gravity (32.2 ft/s2),
a= deceleration rate of the vehicle (11.2 ft/s2), and
G= grade of the roadway (in decimal form).

Current AASHTO SSD guidance related to
perception-reaction time (PRT) and deceleration rate is
provided in the Green Book (6). These values are based
on 90th percentile PRT and 10th percentile deceleration
rate values from experiments that were completed in
Texas in the mid-1990s (7). However, these experiments
lacked real-world distractions that drivers are subject to,
were limited in the age range and abilities of drivers, and
did not test a wide variety of initial speeds and lighting
conditions that may affect PRT and deceleration rates.
Thus, the values from these experiments may not be
applicable in real-world scenarios.

There are likely many factors that influence PRT and
deceleration rate. The deceleration rate a driver is likely
to select (i.e., the intensity of brake application) in brak-
ing situations is likely dependent on the level of risk per-
ceived by the driver. Thus, there is potential that PRT
has a direct impact on emergency deceleration rates.
Large values of PRT may occur because of inattentive-
ness, yet the driver may brake harder because of an
impending collision when compared with a shorter PRT
for the same initial conditions. Conversely, attentive
drivers with long PRT may have low deceleration rates if
they judge the conflict to be low risk (i.e., there is little
urgency for either PRT or braking).

Objectives

Understanding the relationship between PRT and decel-
eration rate can improve transportation engineers’
understanding of human factors related to SSD, leading
to improved design guidance and safer roadways.
Therefore, this research (1) evaluated the differences in
PRT and deceleration rates between crash and near-
crash events and (2) developed prediction models for the
90th percentile PRT and 10th percentile deceleration
rates. The results of this research could be used by trans-
portation agencies in developing future design guidance.

Literature Review

Deceleration Rate

A limited amount of research on deceleration rates for
passenger cars with anti-lock braking systems (ABS) is
available in the published literature (7–9). However, it
is well known that these systems improve braking

performance. Also, deceleration rates may be higher
when skidding is avoided because of static friction coeffi-
cients being higher than dynamic friction coefficients.

Current AASHTO design guidance is based on find-
ings from experiments conducted in Texas in the mid-
1990’s (7). The experiments included wet and dry pave-
ments on horizontal and tangent road sections. The
results had mean deceleration rates of 0.51–0.57 g’s with
standard deviations of 0.08–0.12 g’s. The 10th percentile
deceleration rate values from this study are used for the
current AASHTO SSD requirements.

A separate study using only young (18–25 years old)
or old (65+ years old) drivers found that values for the
mean and standard deviation of deceleration rates were
smaller than the values currently used in AASHTO
design guidance (3). These results indicated that the
mean deceleration rate was 0.48 g’s with a standard
deviation of 0.03 g’s. However, only 10 drivers out of 64
drivers included in the study braked for an unexpected
object that appeared 2.5 s before reaching the object,
leaving the results subject to potential bias.

Other studies used: professional drivers to perform
hard braking maneuvers from 36mph; a field trial
involving six male and 10 female drivers, all between the
ages of 23 and 59; motorcycles; or unspecified testing
sample and methodology (9–12). Each of these studies is
not generalizable to the general driving population.
Thus, the detailed results of these studies are not dis-
cussed here.

Perception-Reaction Time (PRT)

PRTs for minimum SSD criteria in the Green Book are
based on non-distracted drivers. However, there are
many factors that could influence driver distraction lev-
els. These factors should be accounted for, if possible, in
the PRT, as long as distractions are a factor in driving.

Some factors that have been suggested as driving dis-
tractions include listening to music, cellular phone use,
interacting with other people in the vehicle, eating/drink-
ing, and adjusting vehicle controls (13). Other possible
factors that could slow response times include fatigue,
alcohol use, and prescription, recreational, and illegal
drug use (14–18). The distractions indicated by these
researchers are not comprehensive. While it is unrealistic
to design for drivers who are under the influence of
drugs or alcohol, distractions and fatigue are important
considerations.

A review was conducted of studies that assessed PRT
distributions for unexpected braking events. The mean
values from published research range from 0.594 to
1.550 s with standard deviations in the range 0.098–
1.080 s, depending on the type of study and whether dis-
tracted driving was considered (7, 8, 13, 19–22). Since
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the goal of PRT in minimum SSD criteria is to allow
enough time for a driver to see and react to an object in
the road, the logical decision would be to use a distribu-
tion that includes both distracted and undistracted driv-
ers and reflects actual driving circumstances. The only
study the authors found that meets these conditions was
a naturalistic driving data distribution that includes both
distracted and undistracted drivers (based on the 100-car
Naturalistic Driving Study [NDS] dataset) (19). In this
case, the mean PRT was 1.450 s with a standard devia-
tion of 1.070 s.

Research Methods

Counterfactual Framework and Statistical Matching

One of the objectives of this study was to evaluate differ-
ences in PRT and deceleration rates between crash and
near-crash events. To do this, a statistical matching
approach was used. Assumptions that are required for
the matching to produce valid and accurate results
include (23–27):

1. Stable unit treatment value assumption (SUTVA):
the assumption that when a treatment is applied
to an entity, it does not affect the outcome for
any other entity. In this study, the ‘‘treatment’’
for analysis is if the event were a crash (treat-
ment status=1) or a near-crash (treatment sta-
tus=0) with outcomes of PRT and emergency
deceleration rate. Given that the events are all
independent of each other, this assumption is
reasonable.

2. Positivity: the assumption that the probability of
receiving the treatment at any level is non-zero
(i.e., all entities included in the analysis could
potentially have received the treatment). This
assumption is reasonable for this study, as all
events had the potential of resulting in a crash.

3. Unconfoundedness: the treatment status (treated
or untreated) is conditionally independent of the
counterfactuals for a given set of covariates (i.e.,
there are no important variables omitted from the
analysis or the results are not sensitive to poten-
tially important omitted variables). To justify this
assumption, Rosenbaum’s sensitivity analysis was
applied to assess the sensitivity of the results to
potential hidden bias (23, 28, 29).

Statistical matching methods include propensity score
matching, Mahalanobis matching, optimal matching,
genetic matching, and others (23–26, 28–38). These meth-
ods estimate counterfactuals (i.e., unobserved outcomes
for the ‘‘treated’’ entities) by finding entities without the
treatment that are comparable with the treated entities

(and vice versa). The outcomes for the ‘‘matched’’ entities
serve as the observed and counterfactual outcomes in the
process of estimating the treatment effects. When statisti-
cal matching is employed, either 1:1 (one treated to one
untreated) matching or 1:n (1 treated to n untreated)
matching is used. If the sample sizes of the treated and
untreated groups are similar, or if the untreated group is
smaller than the treated group, 1:1 matching is typically
the preferred choice (26). The matching employed in this
study was 1:1 matching.

Matching Method

For this investigation, genetic matching was used to
compare PRTs and deceleration rates between crash and
near-crash events. Genetic matching uses a sequential
process to optimize covariate balance by finding the best
matches for each treated entity (26). Covariate balance is
achieved when the distributions of observed variables are
approximately the same for the treated and comparison
groups (23, 39, 40). The genetic matching process mini-
mizes imbalance across the covariates (measured using
standardized bias or K-S tests) (32). This is accomplished
by minimizing the general Mahalanobis distance
(GMD), defined in Equation 2 (32).

GMD(~x,~y,W )=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(~x�~y)T (S�1=2)

T
S�1=2W (~x�~y)

q
ð2Þ

where
S = covariance matrix between x and y,
(~x�~y) matrix of the differences in values between
groups x and y for the variables included in the
matching,
S�1=2 Cholesky decomposition of S, and
W = weighting matrix.

Covariate Balance

The variables used in the matching process are deter-
mined by the analyst. Based on the results of the match-
ing algorithm, variables may be added to or taken out of
the matching specification. Regardless of which variables
are used for matching, all variables available should be
checked for covariate balance after the matching is com-
plete. If the results are not satisfactory, adjustments to
the matching specification should be made (i.e., which
variables are including in the matching algorithm, the
functional forms of the variables, the matching algorithm
used, etc.).

To check for covariate balance, standardized bias is
commonly used. The equation for standardized bias (for
continuous covariates) is specified in Equation 3 (24).
The equation for standardized bias for binary variables
is specified in Equation 4 (40).
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SB=
100(�X T � �X C)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2
T + S2

C

2

q ð3Þ

SB=
100(cPT � cPC )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibPT (1� bPT )+ bPC (1� bPC )

2

q ð4Þ

where
XT = sample mean of the treated group for variable x,
�XC = sample mean of the comparison group for variable x,
S2

T = sample variance of the treated group for variable x,
S2

C = sample variance of the comparison group for vari-
able x,cPT = proportion of the treated group with a value of
‘‘1’’ for variable x, andcPC = proportion of the comparison group with a value
of ‘‘1’’ for variable x.

Comparisons of standardized bias for the propensity
score and other covariates from before and after match-
ing can provide an indication of the improvement in cov-
ariate balance because of matching on the propensity
score. Standardized bias results with an absolute value of
10 or smaller are commonly interpreted as indicating no
statistical difference between the treated and comparison
groups (i.e., they are equivalent) (26, 39, 40). As a rule,
the smaller the value of standardized bias, the less biased
the results are likely to be because of the observed cov-
ariates (23, 28, 39, 40).

Estimating the Treatment Effect

The average effect of a treatment on a continuous out-
come (e.g., difference in PRT or deceleration rates), using
statistical matching, can be estimated using Equation 5
(23).

t=
1

N

XN

i= 1
(Ytreated, i � Yuntreated, i) ð5Þ

where
t = average treatment effect,
N = number of treated observations,
Ytreated,i = outcome for the treated condition for obser-
vation i, and
Yuntreated,i = outcome for the untreated condition for
observation i (i.e., the value of the outcome for the
untreated observation matched to treated observation i).

The variance of the treatment effect (estimated using
Equation 6) accounts for matched data being used (23,
41). The treatment effect is divided by the standard error
to estimate a t-statistic, which is then used to estimate the
associated p-value for the treatment effect.

SE(t)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N

XN

i= 1
(Ytreated, i � Yuntreated, i � t)2

r
ð6Þ

Hidden Bias Sensitivity Analysis

Methods have been developed that assess the sensitivity
of statistical matching results to hidden bias (28, 29, 42–
44). The method used in this study was the Wilcoxon
signed-rank test method proposed by Rosenbaum (28, 29).
This method is based on the assumption that, in order for
the treatment effect to be biased because of an unobserved
variable (i.e., hidden bias), the unobserved variable would
need to have a bias of at least a certain magnitude. Thus,
the method tests how strong an impact an unobserved vari-
able must have on the odds of both matched entities receiv-

ing the treatment
pj 1�pkð Þ
pk 1�pjð Þ

� �
(for matched observations j

and k) to cause a significant bias in the results (23). The test
uses odds ratio values with gamma values greater than or
equal to 1 (i.e., G ø 1) in Equation 7 (23, 28, 29).

1

G
ł

pj 1� pkð Þ
pk 1� pj

� � ł G ð7Þ

Using a Wilcoxon signed-rank test, p-values for vari-
ous values of G can be estimated (40, 41). When G is
large enough that a p-value is greater than 0.05, the value
of G is considered to be the measure of sensitivity for hid-
den bias. The larger the value of G in the sensitivity anal-
ysis, the less likely it is that the results are biased because
of unobserved confounders. For details in relation to the
computational procedures for this test, see Guo and
Fraser, or Rosenbaum (23, 28, 29).

Quantile Regression

Quantile regression can be used to estimate the values
for a specified percentile of a distribution, which was
used for developing PRT and deceleration rate predictive
models in this study (45–48). The optimization function
for a linear quantile model is defined in Equation 8 (46).

min(
X

e2(yi ø xT
i

b)
a yi � xT

i b
�� ��

+
X

e2(yi\xT
i

b)
(1� a) yi � xT

i b
�� ��) ð8Þ

where
a = quantile being estimated,
b = vector of coefficients,
yi = dependent variable for individual i,
xT

i = vector of predictor variables for individual i, and
e = error term.
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Quantile regression is also subject to unobserved het-
erogeneity and clustering issues. These can be accommo-
dated using random parameters quantile regression.
While these models were tested, they did not provide any
benefit over the simpler linear quantile models (deter-
mined using chi-square tests).

A separate issue related to regression models is that
the estimates may become biased when the number of
observations per individual differs significantly (highly
unbalanced panels), and the difference in the number of
observations per individual is not because of random
selection (45, 49–51). When the data are highly unba-
lanced and observations are not missing at random, the
model requires adjustments to account for the missing
observations. One method to adjust for unbalanced
panels (with non-random missing observations) is to use
weighting (45, 49, 50, 52). Weighting was accomplished
by giving each observation a weight of 1/Ni where Ni is
the total number of observations for the individual.
Robust clustered standard errors were used in the quan-
tile models to improve estimation of the standard errors
(and associated p-values) (49).

Quantile regression is useful for data analysis when
values other than the mean or median values are of inter-
est (46–49). For deceleration rates used in design, low
percentile deceleration rates are usually of interest. Thus,
quantile regression was used to estimate the 10th percen-
tile deceleration rates as well as the 90th percentile PRTs
using naturalistic driving data, consistent with previous
design guidance (7).

Data

The Strategic Highway Research Program 2 (SHRP2)
implemented a multi-year naturalistic driving study
(NDS) data collection effort that included over 3,400
drivers across the United States in an effort to address
the role of driver performance and behavior in traffic
safety. The SHRP2 data collection effort developed a
database that researchers use to assess driver characteris-
tics and behaviors.

The SHRP2 NDS data were used to explore whether
differences in PRT depend on emergency deceleration
between crash and near-crash events, accounting for per-
sonal and observation-specific characteristics such as
gender, age, initial speed, weather conditions, conflict
type, and other factors (53).

In total, there were 4,236 crash/near-crash events
available for processing. Each event was represented by
a time-series data file, including a set of variables such as
timestamp, GPS/vehicle speed, acceleration rate, gyro
rotation rate, headway, and turn signals. A Java applica-
tion was developed to extract PRT and deceleration rate
from the time-series data. Events with unavailable/

invalid PRT and deceleration data were removed from
the dataset. In total, 2,971 events were extracted with
PRT and average deceleration rate values for use in the
analysis. Table 1 provides variable definitions and
descriptive statistics for the variables used in the statisti-
cal matching (because of the large number of variables
available in the dataset, checked for covariate balance,
Table 1 only includes the variables used for genetic
matching and the outcome variables).

The average deceleration rate was derived using the
accelerometer data and brake pedal position. The decel-
eration rate was only considered during braking (i.e., no
deceleration due only to other resistance factors such as
aerodynamic and rolling resistance was included in the
calculations). This was done to ensure that the results

Table 1. Variable Definitions (2,971 of Total Samples) and
Descriptive Statistics

Variable Definition

Male Driver’s gender
0 if female (52%)
1 if male (48%)

Age Driver’s age
1 if 16–19 (21%)
2 if 20–29 (38%)
3 if 30–39 (9%)
4 if 40–49 (7%)
5 if 50–59 (8%)
6 if 60–69 (7%)
7 if 70–79 (5%)
8 if 80+ (5%)

Alignment 0 if the road segment is straight alignment (87%)
1 if the road segment is curve alignment (13%)

Event Event severity
0 if it is a near-crash event (85%)
1 if it is a crash event (15%)

Lighting Road lighting condition
0 if it is daylight (or lighted) (79%)
1 if it is dawn, dusk, or dark (unlighted) (21%)

Surface Road surface condition
0 if it is dry (80%)
1 if it is wet (17%)
2 if it is icy (1%)
3 if it is snowy (2%)

Avg_Decel Average deceleration rate (g) during the brake time
(Min., Max.): (0.238, 1.09)
SD: 0.209
Mean: 0.442

Speed Vehicle speed before driver’s reaction (mph)
(Min., Max.): (1.05, 119.26)
SD: 18.15
Mean: 31.48

PRT Perception-reaction time (s)
(Min., Max.): (0.004, 6.889)
SD: 1.358
Mean: 1.66

Note: Min. = minimum; Max. = maximum; SD = standard deviation.
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were for deceleration experienced during braking maneu-
vers. Also, only deceleration from breaking before the
time of collision was included for crash events, to avoid
bias from deceleration because of the impact.

The PRT values were computed as the time from the
start of event until the time the driver began braking.
This is not the same value as the time from when the
driver first notices the potential conflict until the start of
braking (which is sometimes considered the ‘‘true’’ driver
PRT); rather, the measure used in this research captures
the time from the start of event until the driver reacts,
which is the reaction time used in roadway design.
Maneuvers where the driver swerved were initially con-
sidered, but did not provide significant insights into the
behavior of drivers during braking maneuvers (or brak-
ing and swerving).

Analysis and Results

Differences Between Crash and Near-Crash Events

The genetic matching algorithm was used to match near-
crash events to the crash events (1:1 matching). The
matching results were analyzed using standardized bias.
The results of the genetic matching resulted in signifi-
cantly improved standardized bias values (all below 10%
for the matched data with many at or near values of
0%). The standardized bias for the unmatched data had
values in excess of 35% for the majority of covariates.
Readers interested in details of the standardized bias
results are referred to Wood and Zhang (54).

The treatment effect for both PRT and deceleration
rate were estimated using the matched data. The results
of the analysis, including Rosenbaum’s sensitivity analy-
sis, are provided in Table 2. This indicates that the results
are robust to unobserved factors, provided the unob-
served factors do not change the odds of being in the
‘‘treated’’ group by more than the specified sensitivity
value (23). As shown, the PRTs for crash events are
0.487 s longer, on average, for crash events than for the
equivalent near-crash events. This estimate is moderately
robust to unobserved confounders (i.e., has a sensitivity
value of 1.6). The deceleration rates for crash events are
0.018 g’s lower for crash events than for the equivalent
near-crash events. This estimate is not robust to unob-
served confounders (i.e., has a sensitivity value of 1.1).
Since deceleration rates for braking in crash events were

truncated at the time of collision (along with the sensitiv-
ity of the estimate), the difference in deceleration rates
between crash and near-crash events could be because of
the truncation.

Predictive Models

Predictive models for the 90th percentile PRT and 10th
percentile deceleration rates were estimated using quan-
tile regression. For the quantile regression, no predictors
were found to be significant for the combined data (near-
crash and crash events) or the crash events only. Thus,
only results for quantile models using the near-crash data
are provided.

For the quantile models, only Speed was found to be
a significant predictor (p-values \ 0.001). In both PRT
and Avg_Decel quantile models, the coefficients for
Speed were negative, indicating shorter PRT and slower
deceleration rates at higher initial speeds. This finding
for deceleration rates is consistent with previous research
(12). While other predictors were not significant (and not
included), these models indicate that different PRT and
deceleration rate values may be useful for design pur-
poses. The equation for estimating the 90th percentile
PRT is provided as Equation 9. The equation for esti-
mating the 10th percentile deceleration rate is provided
as Equation 10 (including 32.2 ft/s2 to set the decelera-
tion rate estimates in imperial units). The speed in both
equations is in mph. For details of the regression models,
see Wood and Zhang (54).

PRT90th =exp(1:145� 0:0039speed) ð9Þ

Avg Decel10th =exp(� 0:9066� 0:0027)+ 32:2 ð10Þ

It should be remembered that the results in Equations
9–10 are based on near-crash events. The results of the
genetic matching analysis indicated that PRT values for
crash events were 0.487 s longer (on average) and decel-
eration rate was 0.018 g’s less (on average) than for near-
crash events. Providing SSD, based on crash events
(which are rare), would result in higher design values for
SSD. Given that quantile models based on crash events
were not found to be significant, conservative design val-
ues for PRT and deceleration rate based on the quantile
models for near-crash events plus the average differences
from the genetic matching results could be used. These

Table 2. Estimated Treatment Effects and Sensitivities to Unobserved Confounders

Outcome Effect t-statistic p-value Wilcoxon sensitivity value

Perception-reaction time (s) 0.487 4.547 \0.001 1.6
Deceleration rate (g’s) –0.018 –1.982 0.049 1.1
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values can be estimates using Equation 11 (for PRT) and
Equation 12 (for deceleration rate).

PRT90th =exp(1:145� 0:0039speed)+ 0:487 ð11Þ

Avg Decel10th =(exp(� 0:9066� 0:0027speed)

�0:018�32:2 ð12Þ

Discussion

Using the quantile models, 90th percentile PRT and 10th
percentile deceleration rates were calculated for design
speeds ranging between 10 and 80mph (based on crash
outcomes using Equations 11–12). These are shown in
Table 3. Current AASHTO standards use a PRT value
of 2.5 s and deceleration rate of 11.2 ft/s2 (2). However,
the results of the PRT and deceleration rate analyses in
this paper indicate that PRT (90th percentile) and
Avg_Decel (10th percentile) values are functions of the
initial speed.

Using the AASHTO SSD model, the predicted PRT
and deceleration rate values from this paper can be used
to calculate new SSD values (6). These values, the cur-
rent AASHTO design SSD values, and the difference
between these models (i.e., the increase in SSD, labeled
as ‘‘Change in SSD [ft]’’) are shown in Table 3. The
increase in SSD ranges from 10.5 ft (at 10mph) to
120.7 ft (at 80mph).

A new SSD model was suggested by Wood and
Donnell (55). In this model, the distance from the front
of the vehicle to the driver’s eye is accounted for, leading
to the vehicle stopping before the front of the vehicle
reaches an object in the road. This model is shown in
Equation 13.

SSD=Vtr +
V 2

2a
+ L ð13Þ

where
L = distance from the driver’s eye to the front of the
vehicle (ft), and other variables are as previously defined.

The authors suggested using a value of 8.5 ft for L,
based on the 90th percentile value for this variable. Using
this model and the current AASHTO design SSD values,
the updated SSD values and change in SSD are shown in
Table 3. As shown, the increase in SSD ranges from
19.0 ft (at 10mph) to 129.2 ft (at 80mph).

Based on this analysis, the SSD values in Table 3
could be used in future roadway design guidance. While
these values are larger than the current design values, it
should be remembered that the SSD model assumes the
following:

1. The object in the roadway is present as soon as it
becomes visible to the driver.

2. The driver only brakes (i.e., does not perform any
other braking maneuver).

The values of SSD for design also use the following:

1. PRT values where the majority of drivers will
react at least that fast

2. Deceleration rates where the majority of drivers
can maintain control of the vehicle (6)

3. Deceleration rates where the majority of drivers
will have at least as great deceleration.

Given these constraints, the current SSD model is very
conservative. Thus, the findings in Table 3 do not

Table 3. Stopping Sight Distance (SSD) using Perception-Reaction Time (PRT) and Deceleration for Crash Events

Speed
(mph) PRT (s)

Deceleration
rate (ft/s2)

New SSD (AASHTO
model) (ft)

New SSD (Wood and
Donnell model) (ft)

AASHTO
design SSD (ft)

Change in SSD
(AASHTO) (ft)

Change in SSD
(Wood and Donnell) (ft)

10 3.51 12.08 60.5 69.0 50 10.5 19.0
15 3.46 11.91 96.6 105.1 80 16.6 25.1
20 3.40 11.72 136.7 145.2 115 21.7 30.2
25 3.34 11.56 181.1 189.6 155 26.1 34.6
30 3.29 11.40 230.3 238.8 200 30.3 38.8
35 3.24 11.24 284.3 292.8 250 34.3 42.8
40 3.18 11.08 342.9 351.4 305 37.9 46.4
45 3.13 10.92 407.3 415.8 360 47.3 55.8
50 3.08 10.75 477.3 485.8 425 52.3 60.8
55 3.03 10.59 553.2 561.7 495 58.2 66.7
60 2.98 10.47 634.3 642.8 570 64.3 72.8
65 2.93 10.30 722.7 731.2 645 77.7 86.2
70 2.89 10.18 817.4 825.9 730 87.4 95.9
75 2.84 10.01 919.7 928.2 820 99.7 108.2
80 2.80 9.85 1,030.7 1,039.2 910 120.7 129.2

Note: AASHTO = American Association of Highway Transportation Officials.
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indicate issues with current SSD guidelines. Additionally,
providing SSD based on crash events (which are rare)
results in longer SSD design values compared with when
using near-crash events. If Equations 9–10 were used in
place of Equations 11–12, the resulting SSD values would
be shorter.

As shown, using the Wood and Donnell model, results
in SSD increases were 8.5 longer than the AASHTO SSD
model. While it may be possible in to use these values in
design rather than the values based on the AASHTO
model, the additional cost of providing the additional
SSD may be prohibitive. This should be considered,
along with the conservative nature of the SSD model,
when developing updated roadway design policy.

Conclusion

Summary

This paper investigated differences in driver reaction
times and deceleration rates between crash and near-
crash events using naturalistic driving data. The values
for these variables were extracted from time-series data
using a Java program developed by the research team.
PRT and deceleration rates are key variables in the
design criteria (e.g., SSD). It is anticipated that providing
improved understanding of the PRT and deceleration
rate could improve transportation engineers’ understand-
ing of human factors related to SSD, leading to improved
design guidance and safer roadways. Therefore, this
study evaluated the differences in PRT and deceleration
rates between crash and near-crash events, and developed
predictive models that could be used for improved geo-
metric design criteria. These were accomplished through
the application of genetic matching (with Rosenbaum’s
sensitivity analysis) and quantile regression models.

Findings

The genetic matching results indicated there were differ-
ences in PRT and average deceleration for crash and
near-crash events. Results indicated that drivers involved
in crash events took 0.487 s longer to react and deceler-
ated at 0.018 g’s (0.58 ft/s2) slower than drivers in
equivalent near-crashes, on average. These results were
statistically significant. The PRT results were more
robust in relation to sensitivity to unobserved confoun-
ders than the deceleration rate estimates.

Predictive models for PRT and deceleration rate were
developed for potential use in roadway design. These
models were used to compare existing SSD design gui-
dance with SSD values based on the predictive models.
This comparison indicated that design SSD would
increase by 10.5–129.2 ft, dependent on the design speed
and SSD model used.

Recommendations and Implementation

The analysis result provided values of PRT and deceleration
rates that could be used in roadway design. These values
were compared with current AASHTO design guidance. As
discussed, the SSD model assumes the following:

1. The object in the roadway is present as soon as it
becomes visible to the driver.

2. The driver only brakes (i.e., does not perform any
other braking maneuver, such as swerving).

The values of variables for determining SSD design gui-
dance also use the following:

1. PRT values where the majority of drivers will
react at least that fast (approximately 90%)

2. Deceleration rates where the majority of drivers
can maintain control of the vehicle, even on wet
pavements

3. Deceleration rates where approximately 90% of
drivers will brake at least that hard.

Design values using crash outcomes were provided
based on quantile regression models and the difference in
PRT and deceleration rates between crash and bear-
crash events. While it may be possible to use crash event
values in design rather than based on near-crash events,
the additional cost of providing the larger SSD values
may be prohibitive. This should be considered, along
with the conservative nature of the SSD model, when
determining updated roadway design policy.

Limitations and Future Work

As with any analysis, there are limitations to this work.
Some limitations in this research include the following:

1. There was not a large sample of crashes.
2. The data were several years old (at the time of

analysis).
3. The data were not collected using random sampling.

These limitations are noted to provide context for the
findings. Analysis methods that account for the non-
random sampling were used, and there was an adequate
sample size of crash events to produce statistically signif-
icant results. It is not anticipated that driver behavior
has changed considerably in the last several years; thus,
the results could be used to guide the development of
design criteria.

Future work should use different datasets, in the
United States and abroad, to validate the findings
detailed in this report. Current naturalistic driving stud-
ies in Europe and China could be used. Differences
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should also be evaluated using the datasets because these
are often collected for different populations and different
cultures.

Future work should also consider the impacts of new
technologies on driver PRT and deceleration rates.
Current technologies, such as forward collision warning,
automatic emergency brakes (AEB), and lane keep assist,
may be associated with changes in driver behaviors that
affect PRT and deceleration rates. Thus, such technolo-
gies should be considered in future research.

Finally, future work should consider the mechanistic
and probabilistic relationships between SSD, available
sight distance, likelihood of an object being in the road,
and SSD-related collisions in a causal inference frame-
work. The results of this analysis could provide insights
into new mitigation strategies and potential for
performance-based design guidelines related to SSD.
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