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ABSTRACT
Various methods have been proposed for protecting the
speaker’s identity while preserving speech intelligibility.
However, existing studies fail to consider the overall tradeoff
between speech utility, speaker verification, and inference of
voice physical attributes, such as emotion, age, accent, and
gender. we propose a tradeoff metric to encapsulate voice
biometrics as well as different voice attributes, to study the
feasibility of applying cutting-edge voice anonymization so-
lutions to achieve the optimum tradeoff between privacy
protection and speech utility.

CCS CONCEPTS
• Security and privacy→ Privacy protections.
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1 INTRODUCTION
Voice interfaces such as Siri, Alexa, and Google Assistant
have become increasingly pervasive in our daily lives, offer-
ing numerous conveniences from music streaming to hands-
free home appliance control. However, this convenience of-
ten results in security and privacy risks as voice data, in-
cluding personally identifiable information like physical at-
tributes, is often stored and processed by vendors to improve
speech recognition engines and for commercial purposes.

The security issue intensifieswith advances in voice cloning
and speech synthesis technologies. With a few audio sam-
ples, it is possible to clone a victim’s voice. Additionally, the
privacy risk arises from the potential use of stored audio
data for linkage attacks, where voiceprint uniqueness can be
exploited to identify speakers from unlabeled speech data.
Moreover, raw audio data can be used to infer age, gender,
accent, and emotional state.

There has been extensive research on voice anonymization
techniques, with initiatives like the VoicePrivacy challenge
encouraging participants to design systems that preserve as
much linguistic content while minimizing speaker identity.
However, these techniques mainly focus on speaker recogni-
tion and speech recognition to evaluate privacy and utility
tradeoffs, and do not consider how anonymization limits
the inference of physical attributes. This study introduces
VoicePM , a Voice Privacy Measurement tool for evaluating
state-of-the-art voice anonymization solutions.

2 SYSTEM DESIGN
In a typical voice interaction system, the microphone records
the audio input and uploads it to a cloud service maintained
by the manufacturer or some third party for further process-
ing. While speech-to-text is a typical processing that takes
place, vendors have also been known to extract other forms
of voice attributes (e.g., emotion, age, accent, and gender) for
commercial purposes.
VoicePM bridges the communication between the user

input, the cloud, and third-party apps. VoicePM accesses the
raw audio, perturbs it, and produces sanitized audio via the
anonymization engine. The sanitized audio is then sent to the
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cloud, which provides automatic speech recognition (ASR)
to send back the corresponding transcript. VoicePM can be
integrated into the operating system and offer customizable
controls to ensure input anonymity.

2.1 Speech Utility
As different voice anonymization systemsmight impact ASRs
differently, we normalize the word error rate (WER) to per-
form a comparative analysis. Eq. 1 presents our used utility
metric, where𝑊𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is theWER for the original speech
in a database and𝑊𝐸𝑅𝑚𝑜𝑑𝑒𝑙 is for the anonymized speech.
That is,𝑈 is equal to 1 for the original audio dataset while
𝑈 ∈ [0, 1) for the anonymized audio.

𝑈 =
1 −𝑊𝐸𝑅𝑚𝑜𝑑𝑒𝑙

1 −𝑊𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
(1)

2.2 Speech Privacy
Speaker Verification. Speaker verification is the process of
identifying a person from the characteristics of the voice. The
Equal Error Rate (EER) is the rate at which a false reject rate
equals a false acceptance rate to measure the optimum per-
formance of the speaker verification system. Eq. 2 represents
the normalized speaker verification accuracy.

𝑆 =
𝐸𝐸𝑅𝑚𝑜𝑑𝑒𝑙 − 𝐸𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐸𝐸𝑅𝑚𝑜𝑑𝑒𝑙

(2)

where 𝐸𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the EER for the original database and
𝐸𝐸𝑅𝑚𝑜𝑑𝑒𝑙 is the overall EER between clean speech and sani-
tized speech generated by the anonymization model. Thus,
theoretically, 𝑆 is equal to 0 for the original audio dataset
while 𝑆 ∈ (0, 1] is for the anonymization model.
Attributes Inference. Speaker identity is one of many po-
tential paralinguistic attributes. In addition, voice attributes,
including gender, age, accent, and emotion, are also impor-
tant paralinguistic attributes.
Privacy Metric. We use Jaccard similarity to measure the
similarity between two sets of voice attributes to see which
attributes are shared among the two sets, as shown below.

𝐽 (𝐴,𝐴′) = 𝐴 ∩𝐴′

𝐴 ∪𝐴′ (3)

where 𝐴 represents the set of voice attributes (i.e., gender,
age, accent, and emotional state) of the original speaker, and
𝐴′ represents the inferred voice attributes from the recorded
audio. For simplicity, we assign equal weight to all attributes,
but VoicePM can easily incorporate different weights for the
different attributes when computing Jaccard similarity.

To compare the effectiveness of different voice anonymiza-
tion techniques, we normalize the Jaccard index as shown in
Eq. 4, where 𝐽𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝐽𝑚𝑜𝑑𝑒𝑙 refers to the Jaccard index of
the original and anonymized speech, respectively. That is, 𝐽
is equal to 1 for the unaltered audio dataset while 𝐽 ∈ [0, 1)

for the sanitized audio. A higher 𝐽 means the adversary has
more chance to infer the speaker’s voice attributes.

𝐽 =
𝐽𝑚𝑜𝑑𝑒𝑙 (𝐴,𝐴′)
𝐽𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝐴,𝐴′) (4)

We use the normalized EER (𝑆 from Eq. 2) and Jaccard
index ratio ( 𝐽 from Eq. 4) to represent the privacy metric
(𝑃 ). As 𝑃 monotonically increases with 𝑆 and monotonically
decreases with 𝐽 , we use Eq. 5 to represent 𝑃 . To this end,
privacy accounts for both speaker verification and voice
attribute inference as shown below:

𝑃 = 𝛾𝑆 + (1 − 𝛾) (1 − 𝐽 ) (5)

where 𝛾 ∈ (0, 1] and signifies to what extent we want to
prioritize the individual components within 𝑃 .

2.3 Privacy vs. Utility Tradeoff
For a given anonymization model, speech privacy increases
(𝑃 ) while the speech utility (𝑈 ) decreases. Therefore, there
exists an optimum tradeoff between privacy and utility. The
ideal relationship between 𝑃 and𝑈 forms an arc of an eclipse.
For the original audio, 𝐸𝑅𝑅𝑚𝑜𝑑𝑒𝑙 = 𝐸𝑅𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝐽 = 1, and
𝑊𝐸𝑅𝑚𝑜𝑑𝑒𝑙 = 𝑊𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , so 𝑃 = 0 and 𝑈 = 1. As the
anonymization model perturbs the audio signal, 𝑃 increases
(↑) while 𝑈 decreases (↓). The ideal anonymization solution
would be for both privacy and utility to be at their maximum
possible levels. Therefore, there exists a point (𝑈 , 𝑃) where
the 𝑃 and 𝑈 form a rectangle with the highest area (𝑃 ×𝑈 );
we define this area measurement as the tradeoff between
privacy and utility, which is represented by Eq. 6.

𝑇 (𝑆, 𝐽 ,𝑈 ) = 𝑃 ×𝑈 = [𝛾𝑆 + (1 − 𝛾) (1 − 𝐽 )] ×𝑈 (6)

where 𝑆 , 𝐽 and𝑈 ∈ [0, 1],𝛾 ∈ (0, 1), and𝑇 ∈ [0, 1].𝑇 equals 0
for the original speech, and higher values of𝑇 mean a better
tradeoff of privacy and utility for a given voice anonymiza-
tion technique.

3 INFERENCE & ANONYMIZATION
MODELS

Datasets. We use three datasets including Mozilla Common
Voice (CV) English Corpus 10.0 (released on July 4, 2022),
AISHELL-1 (Mandarin Chinese), and IEMOCAP (emotion
dataset), to evaluate the feasibility and transferability of the
inference attack models as well as the voice anonymization
models. All datasets are resampled to 16kHz WAV files.
As shown in detail in Table 1, we follow the original ac-

cents categories labeled in the CV dataset and consider the
top 10 accents with the highest number of speech utter-
ances for our analysis. We adopt the wav2vec2 + CTC as
our speech-to-text engine to perform transcription evalu-
ation and a pre-trained ECAPA-TDNN model [3] for speaker
verification.
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Table 1: Common Voice English dataset summary.
Accents Alias # of samples # of speakers Length (hrs)

United States US 10000 2683 13.78
England EN 10000 1343 13.17

India and South Asia INSA 10000 1450 13.26
Canadian CA 10000 649 13.28
Australian AU 10000 534 12.98

New Zealand NZ 8514 138 10.80
Scottish SC 7995 141 11.13
Ireland IE 6052 164 7.93

Southern African SA 5794 112 3.26
Chinese CN 4887 285 10.74
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Figure 1: Inference of different voice attributes using differ-
ent voice anonymization techniques.

Attribute Inference Models. We use the BASE wav2vec2
model [2] to train and infer the physical attributes.We use the
trained wav2vec2 model on the IEMOCAP data to infer the
emotional state as the baseline, whichwill be used to compare
the emotional state after applying the voice anonymizers.
Voice Anonymization Models.We implemented five state-
of-the-art privacy-preserving models. These models modify
a source speaker’s voice so that it sounds like another target
speaker without changing the language contents. We con-
sider four types of voice anonymization methods, including
voice signal processing (SP) [6, 7], voice synthesis (VS) [5],
voice conversion (VC) [4], and adversarial example [1].

4 RESULT AND CONCLUSION
Figure 1a and 1b show the accuracy of inferring gender,
age, accent, and emotional state, along with the 𝐽 metric.
With the increase of the McAdams coefficient from 0.5 to 0.9,
McAdams does not change gender inference significantly,
while the inference accuracy for accent, age, and emotion
varies significantly. Specifically, the gender inference accu-
racy changes from 78.60% to 96.89%, the accent inference
increases from 12.02% to 83.41%, the age inference increases
from 19.29% to 51.23%, and the emotional state inference
rises from 25.69% to 85.61%. With the increase of the warp-
ing coefficient, VoiceMask𝛼 does not significantly decrease
the accuracy of emotional state inference (<20%). Fig. 2 plots
the𝑈 , 𝑃 , and 𝑇 for all five models. For the signal processing-
based approaches, McAdams (𝑈 = 0.86, 𝑃 = 0.59, 𝑇 = 0.50)
slightly performs worse than VoiceMask. VoiceMask𝛼 (𝑈
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Figure 2: Overall performance for voice anonymizers.

= 0.84, 𝑃 = 0.67, 𝑇 = 0.56) has overall better performance
in 𝑈 and 𝑃 than VoiceMask𝛽 (𝑈 = 0.84, 𝑃 = 0.64, 𝑇 = 0.53).
HiFi-GAN performs with the best tradeoff (𝑇 = 0.86) among
all five anonymizers, followed by V-CLOAK with a tradeoff
of 0.66. MaskCycleGAN preserves the highest privacy (𝑃 =
0.85), but its utility (𝑈 = 0.33) has the worst performance,
resulting in the worst tradeoff (𝑇 = 0.28). In this study, we
build and evaluate voice attribute inference models, includ-
ing emotion, age, accent, and gender, We develop a novel
voice privacy measurement tool VoicePM , to first explore
and evaluate the tradeoff of privacy and utility for state-
of-the-art voice anonymizers. Our experiments show that
VoicePM can effectively measure the tradeoff of different
anonymization models for a larger set of voice attributes. In
the future, we plan to expand voice anonymizers and develop
an open-source library for voice anonymity.
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