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ABSTRACT
Voice-based human-computer interaction has become pervasive
in laptops, smartphones, home voice assistants, and Internet of
Thing (IoT) devices. However, voice interaction comes with secu-
rity and privacy risks. Numerous privacy-preserving measures have
been proposed for hiding the speaker’s identity while maintain-
ing speech intelligibility. However, existing works do not consider
the overall tradeoff between speech utility, speaker verification,
and inference of voice attributes, including emotional state, age,
accent, and gender. In this study, we first develop a tradeoff metric
to capture voice biometrics as well as different voice attributes. We
then propose VoicePM, a robust Voice Privacy Measurement frame-
work, to study the feasibility of applying different state-of-the-art
voice anonymization solutions to achieve the optimum tradeoff
between privacy and utility. We conduct extensive experiments
using anonymization approaches covering signal processing, voice
synthesis, voice conversion, and adversarial techniques on three
speech datasets that include both English and Chinese speakers to
showcase the effectiveness and feasibility of VoicePM.

CCS CONCEPTS
• Security and privacy→ Privacy protections.
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1 INTRODUCTION
In recent years, voice interfaces (e.g., voice assistants) like Apple
Siri, Amazon Alexa, and Google Assistant have become increasingly
pervasive in our daily lives. Voice assistants (VAs) provide great
conveniences, such as searching the web, listening to music, and
hands-free control of home appliances. These VAs are not only in-
tegrated into laptops, smartphones, and smart speakers but also are
prevalent in kid’s toys, smart TVs, smart cars, and other appliances.
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Moreover, the Covid-19 pandemic accelerated the adoption of voice
interfaces to avoid in-person interactions [70].

The convenient and pervasive usage of voice interfaces often
comes at the cost of security and privacy risks. A voice interface
usually sends the raw audio signal to the cloud for further pro-
cessing, which can lead to the extraction of personally identifiable
information (PII), such as physical attributes (e.g., emotion, gender,
and accent). In fact, there have been numerous reports of vendors
storing and processing users’ voice data to improve the speech
recognition engine [2, 3] as well as for financial gains [1, 74]. In
addition, recent lawsuits claim voice data is being used to serve
targeted ads [28, 66]. For example, both Apple [3], and Microsoft
[2] store the audio clips generated when people use their voice-
enabled products (i.e., Microsoft Cortana and Apple Siri) for up to
two years, and Microsoft claims that it shares voice data with third
parties [2]. Furthermore, McDonald’s was reported to extract the
voiceprint of a customer’s speech to identify repeating customers
at drive-throughs [4].

The security concern with voice data captured through voice
interfaces is further exacerbated by the rapid development in voice
cloning and speech synthesis technology, as with only a few audio
samples from a victim, one can easily clone the victim’s voice input
[9, 72]. As voiceprint (i.e., voice-based biometric) is widely used
in emerging authentication systems to unlock smart devices and
activates voice assistants like Amazon Alexa and Google Assistant,
recording and storing voice data imposes new attack vectors. The
privacy concern stems from the possibility of stored audio data be-
ing used to conduct linkage attacks. While many service providers
remove the IDs associated with the speech data to anonymize the
collected speech data, as each person’s voiceprint is unique, it is
still feasible to identify the speakers of unlabeled speech data via
speaker recognition/verification. For example, suppose one can
collect speech samples of the target person from other sources. In
that case, one can easily identify the records belonging to the target
from the database, which can lead to an identity breach.

Another privacy risk with the collection of raw audio data is
that it is possible to infer the age, gender, accent, and emotional
state of a speaker from speech signals, which leads to building
applications such as advertisements based on customer age, gen-
der, and accent. Recently, Amazon filed a patent to determine the
physical (e.g., accent, gender, age, etc.) and emotional character-
istics of users based on voice audio input [27]. However, people
usually have low awareness regarding what type of information
can be inferred through voice data. For example, a recent study
conducted a nationally representative survey in the UK (683 indi-
viduals, 18–69 years old) to investigate people’s awareness of the
inferential power of voice and speech analysis [36]. The results
show that most participants have rarely or never thought about
the possibility of personal information being inferred from speech
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data, and only 18.7% of participants are at least somewhat aware
that physical and mental health information can be inferred from
voice recordings [36]. Lack of user awareness can lead to unwanted
information leakage through voice interfaces. Therefore, there is
a critical need for voice anonymization to preserve the privacy of
recorded voice data.

In the last decade, there has been extensive research on voice
anonymization techniques [7, 19, 49, 53, 67]. In the 2020 and 2022
VoicePrivacy challenge [64, 65], participants designed systems to
anonymize the speaker’s voice to hide the speaker’s identity as
much as possible while at the same time limiting the distortion
of other speech characteristics to retain as much of the linguis-
tic content as the original voice. By doing so, the solution with a
higher speaker verification error rate (i.e., a better privacy guaran-
tee) and a lower word error rate in speech content transcription (i.e.,
higher utility) would be the top candidates. However, the challenge
is limited to only the tradeoff between speaker verification and
speech intelligibility. Other inferrable attributes, such as physical
attributes, are not thoroughly analyzed. For example, we applied
our voice attribute inference on 50 original utterances from a fifty-
year-old Irish (IE) woman, speaking with a neutral emotion (using
Common Voice dataset [8]). The state-of-the-art inference mod-
els accurately identified the user’s age, gender, emotional state,
and accent. Privacy-preserving anonymization techniques such as
McAdams [49] only hides the age information, while V-CLOAK
[5] perturbs the gender as male and age as a senior but not accent.
Thus, the majority of existing works [19, 49, 53] focus on speaker
recognition/verification and speech recognition alone to evaluate
the privacy and utility tradeoff of voice anonymity techniques;
however, it is unclear how the anonymization solution limits the
inference of physical attributes, including gender, age, accent, and
emotion. In addition, there is no robust systematic tool to measure
the tradeoff between privacy and utility for various anonymity
schemes while considering attribute inference.

We propose, VoicePM, a robust Voice PrivacyMeasurement on
the state-of-the-art of voice anonymization solutions for a larger
set of sensitive attributes, including the user’s voice biometric and
physical attributes. We make the following contributions:
• We propose a novel privacy measurement that leverages the
speech utility, voice biometric, and physical attributes to sys-
tematically study the tradeoff for different voice anonymization
solutions.

• We implement VoicePM and thoroughly evaluate it on three
datasets (i.e., Common Voice [8], IEMOCAP emotion dataset
[14], and AISHELL Chinese Mandarin dataset [13]) by apply-
ing five state-of-the-art anonymization models to highlight the
tradeoff between speech utility, speaker verification, and physical
attribute inference (i.e., emotion, age, accent, and gender). Exist-
ing works lack a comprehensive tradeoff analysis for different
voice attributes. We have open-sourced our code base. 1

• We perform a comprehensive feasibility analysis, studying the
impact of various anonymization models, tradeoffs for differ-
ent voice attributes, generalizability, and transferability across
datasets. Our extensive experiments highlight VoicePM ’s ability
to better design a privacy mode for emerging voice interfaces.

1https://github.com/zhangshaohu/VoicePM

2 RELATEDWORKS
Voice Synthesis. Spoofing attack on speaker verification systems
has received considerable attention over the past decade. Studies
have shown that voice-based authentication systems are vulnerable
to impersonation [23, 24] and replay attacks [34, 69]. More powerful
techniques include speech synthesis [35, 37, 46] and voice conver-
sion [9, 29–31] techniques. Kumar et al. [37] proposed MelGAN,
which adopted generative adversarial networks (GANs) to reliably
generate high-quality coherent waveforms to enable real-time syn-
thesis on the CPU. To achieve efficient and high-fidelity speech syn-
thesis, HiFi-GAN [35] developed GANswith a discriminator consist-
ing of small sub-discriminators, each of which obtains only specific
periodic parts of raw waveforms. By doing so, HiFi-GAN generates
samples with comparable speed and quality. MaskCycleGAN-VC
[31] is a non-parallel Voice conversion (VC) technique that applies a
temporal mask to the input Mel spectrogram and fills in the missing
frames based on the surrounding frames to train voice converters
without a parallel corpus. MaskCycleGAN-VC has shown its advan-
tage in speech naturalness and speaker similarity compared with
the state-of-art voice conversion approach such as CycleGAN-VC2
[29], and CycleGAN-VC3 [30].
Sensitive Data Inference. Voice recordings are typically a rich
source of personally sensitive information. The voice signal con-
tains linguistic and paralinguistic information, whereas the latter
is rich with inferrable details such as age, gender, accent, body size,
and health status [55]. Studies have shown that speech recordings
can reveal an individual’s gender with almost certainty [18, 38, 47]
or be used to estimate a speaker’s age [12, 25, 62]. Speech recordings
can also be used to determine the speaker’s spoken language [20]
or accent [10], even to profile a person’s health condition, feeling
or emotional state [15, 51].
Privacy-preservingVoiceConversion. Many privacy-preserving
approaches have been explored to protect various degrees of privacy
to voice data [7, 42–44, 50, 53, 73]. Nautsch et al. [44] investigate
the importance of developing privacy-preserving technologies to
protect speech signals and highlight the importance of applying
these technologies to protect speakers and speech characterization
in recordings. Recent works have sought to protect speaker identity
[49, 53], gender identity [7], and emotional state [6, 73].

Qian et al. implemented VoiceMask [53] onAndroid smartphones
to convert voice based on vocal tract length normalization (VTLN).
As a result, the speaker identification decreased to 16% based on
50 speakers while reducing voice input accuracy by no more than
14.2%. Patino et al. [50] use the McAdams coefficient to transform
the spectral envelope of speech signals to level up the equal error
rate (EER) of speaker verification as much as 30% while keeping
the word error rate (WER) as low as 9%, compared with the WER of
8.4% in the original dataset. V-CLOAK [5] explores adding imper-
ceptible noises to audio to generate adversarial examples so that the
Automatic Speaker Verification (ASV) cannot recognize the speaker.
Zhu et al.[73] designed an emotion privacy protection mechanism
to filter users’ emotions across multiple emotion states. Alofi et
al. [7] adopted disentangled representation learning to prevent
speaker verification implemented on different real-world datasets
and show that the proposed approach can effectively defend against
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Figure 1: Typical data flow in a voice assistant. Figure 2: Our proposed privacy control for voice interfaces.

this inference attack, including gender recognition and emotion
recognition.
Distinction with related work. Existing works are limited to
analyzing only one or two voice-based attributes and lack a com-
prehensive tradeoff analysis for different voice anonymization tech-
niques. Performing a comparative analysis of the different voice
anonymization techniques and how their parameters impact the
tradeoff between utility and privacy is critical for realistic deploy-
ment. In this paper, we not only compare various anonymization
techniques but also perform a tradeoff analysis for a larger number
of voice attributes (considering both voice biometrics as well as
physical attributes). We believe our analysis will help shape the
design of different privacy settings for voice interfaces.

3 DESIGN OF VOICEPM
In this section, we provide an overview of VoicePM and the threat
model. We define speech utility and privacy, and formalize the
tradeoff measurement model.

3.1 Overview
Fig. 1 shows the typical system architecture of a voice interaction
system. The microphone records the audio input and uploads it to a
cloud service maintained by the manufacturer or some third party
for further processing. While speech-to-text is a typical processing
that takes place, vendors have also been known to extract other
forms of voice attributes (e.g., emotion, age, accent, and gender) for
commercial purposes [1, 74].

In Fig. 2, we present the privacy-preserving voice input scenario
where VoicePM can be used. VoicePM bridges the communication
between the user input, the cloud, and third-party apps. VoicePM
accesses the raw audio, perturbs it, and produces sanitized audio
via the anonymization engine. The sanitized audio is then sent to
the cloud, which provides automatic speech recognition (ASR) to
send back the corresponding transcript. VoicePM can be integrated
into the operating system and offer customizable controls to ensure
input anonymity. The user can utilize VoicePM as an additional
feature to adjust privacy settings for various applications. For ex-
ample, trusted apps may have access to the authentic voice, while
untrusted apps can only access sanitized voice data through privacy
controls. VoicePM can be deployed either on the devices or from a
reliable cloud service provider to prevent the cloud from collecting
extra private information from the user’s device.

3.2 Threat Model
As depicted in Fig.2, the anonymization step takes the user’s voice
input alongwith configuration parameters to produce an anonymized
version. We assume the adversary accesses the anonymized audio
whose speaker is unknown in dataset 𝑋 ′ and the adversary has
collected clean utterances of a pool of potential speakers in dataset
𝑋 (i.e., from some auxiliary source) to train various inference algo-
rithms. An adversary attempts to deanonymize a given anonymized
test sample by inferring the speaker. For this, the adversary designs
a linkage function that outputs a score for any utterance from𝑋 and
𝑋 ′. For instance, the attacker usually employs the cosine similarity
score (shown in Eq. 1) to assess the similarity of speech representa-
tions between the target sample 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 and the test sample 𝑥 ′𝑡𝑒𝑠𝑡 ,
determining if the utterances originate from the same speaker or
not. In addition, the attacker has trained the voice attribute infer-
ence models based on the clean dataset 𝑋 and then applies the
inference models to identify the speaker’s accent, emotion, age,
gender, etc.

𝑆𝑐𝑜𝑟𝑒 (𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑥 ′𝑡𝑒𝑠𝑡 ) =
𝑥𝑡𝑎𝑟𝑔𝑒𝑡 · 𝑥 ′𝑡𝑒𝑠𝑡

| |𝑥𝑡𝑎𝑟𝑔𝑒𝑡 | | | |𝑥 ′𝑡𝑒𝑠𝑡 | |
(1)

3.3 Speech Utility
The utility of speech recognition systems is usually evaluated with
word error rate (WER), which measures the differences between
the transcription given by the ASR system and the ground truth as
captured using the following function:

𝑊𝐸𝑅 =
𝑁𝑠𝑢𝑏 + 𝑁𝑑𝑒𝑙 + 𝑁𝑖𝑛𝑠

𝑁𝑟𝑒 𝑓
(2)

where 𝑁𝑠𝑢𝑏 , 𝑁𝑑𝑒𝑙 , and 𝑁𝑖𝑛𝑠 are the numbers of substitution, dele-
tion, and insertion errors of words, respectively. 𝑁𝑟𝑒 𝑓 is the ground-
truth number of words. We set WER to 1 if WER is greater than
1. As different voice anonymization systems might impact ASRs
differently, we normalize the WER to perform a comparative analy-
sis. Eq. 3 presents our used utility metric, where𝑊𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the
WER for the original speech in a database and𝑊𝐸𝑅𝑚𝑜𝑑𝑒𝑙 is for the
anonymized speech. That is,𝑈 is equal to 1 for the original audio
dataset while𝑈 ∈ [0, 1) for the anonymized audio.

𝑈 =
1 −𝑊𝐸𝑅𝑚𝑜𝑑𝑒𝑙

1 −𝑊𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
(3)
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3.4 Speech Privacy
Voice signals are a rich source of personal information which in-
cludes speaker identification and inferred voice attributes, including
gender, age, accent, and emotional states.

3.4.1 Speaker Verification: Speaker verification is the process of
identifying a person from the characteristics of the voice. The Equal
Error Rate (EER) is the rate at which a false reject rate equals a
false acceptance rate to measure the optimum performance of the
speaker verification system. Eq. 4 represents the normalized speaker
verification accuracy.

𝑆 =
𝐸𝐸𝑅𝑚𝑜𝑑𝑒𝑙 − 𝐸𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐸𝐸𝑅𝑚𝑜𝑑𝑒𝑙
(4)

where𝐸𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the EER for the original database and𝐸𝐸𝑅𝑚𝑜𝑑𝑒𝑙
is the overall EER between clean speech and sanitized speech gener-
ated by the anonymization model. Thus, theoretically, 𝑆 is equal to 0
for the original audio dataset while 𝑆 ∈ (0, 1] is for the anonymiza-
tion model.

3.4.2 Attributes Inference: Speaker identity is one of many poten-
tial paralinguistic attributes. In addition, voice attributes, including
gender, age, accent, and emotion, are also important paralinguistic
attributes.
Gender. Sexual dimorphism in the vocal apparatus of male and
female adults affects both the source and filter aspects of voice
production [63]. Humans can easily identify and perceive the fun-
damental frequency (related to the perceived pitch). Adult males
generally tend to have voices with a low fundamental frequency of
phonation (F0) or low pitch, while adult females tend to have voices
with a high F0 or high pitch. Researchers noted that the voice pitch
of males and females, on average, is 100–200 Hz and 120–350 Hz,
respectively [52, 63]. In addition, adult females have shorter vocal
tract lengths, and their formant frequencies are 15% higher than
adult males [57].
Age. The changes caused by age to voice are called in medical terms
presbyphonia [39]. The vocal tract and its components are vital to
producing sound, where the vocal folds in the larynx change con-
tinuously with age as a person grows from childhood to adulthood.
The vocal folds are short at birth and grow through childhood and
early adulthood. The pitches of children’s voices are much higher
than those of adults. From early adulthood until the age of about
55 years, voice pitch remains relatively constant, and then changes
in senior as the tissue structure within the vocal tract begins to
undergo deteriorating changes [57].
Accent. Language learning and exposure in early childhood cause
the formation of tenacious speaking habits [57]. These habits deter-
mine how a person coordinates and moves their articulators during
the speech and what sounds they are able to form or even perceive.
The speaking habits of early childhood remain in a person’s speech
throughout their life unless they make extreme efforts to “unlearn”
or mask them. These habits translate to specific patterns of signal
characteristics known as accents which encode information about
the speaker’s nationality and geographical origin [57].
Emotion. Emotions affect the physiology of a person. The effects
also extend to the speech production mechanism and the nervous
system, including the brain. The process of phonation is affected by
emotions, and it is possible to infer emotion through voice data [51].

3.4.3 Formalizing Privacy Metric. We use Jaccard similarity [45] to
measure the similarity between two sets of voice attributes to see
which attributes are shared among the two sets, as shown below.

𝐽 (𝐴,𝐴′) = 𝐴 ∩𝐴′

𝐴 ∪𝐴′ (5)

where 𝐴 represents the set of voice attributes (i.e., gender, age, ac-
cent, and emotional state) of the original speaker, and𝐴′ represents
the inferred voice attributes from the recorded audio. For simplicity,
we assign equal weight to all attributes, but VoicePM can easily
incorporate different weights for the different attributes when com-
puting Jaccard similarity (such weights can come in the form of
privacy settings selected by the user).

To compare the effectiveness of different voice anonymization
techniques, we normalize the Jaccard index as shown in Eq. 6, where
𝐽𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝐽𝑚𝑜𝑑𝑒𝑙 refers to the Jaccard index of the original and
anonymized speech, respectively. That is, 𝐽 is equal to 1 for the
unaltered audio dataset while 𝐽 ∈ [0, 1) for the sanitized audio. A
higher 𝐽 means the adversary has more chance to infer the speaker’s
voice attributes.

𝐽 =
𝐽𝑚𝑜𝑑𝑒𝑙 (𝐴,𝐴′)
𝐽𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (𝐴,𝐴′) (6)

We use the normalized EER (𝑆 from Eq. 4) and Jaccard index ratio
( 𝐽 from Eq. 6) to represent the privacy metric (𝑃 ). As 𝑃 monotoni-
cally increases with 𝑆 and monotonically decreases with 𝐽 , we use
Eq. 7 to represent 𝑃 . To this end, privacy accounts for both speaker
verification and voice attribute inference as shown below:

𝑃 = 𝛾𝑆 + (1 − 𝛾) (1 − 𝐽 ) (7)

where 𝛾 ∈ (0, 1] and signifies to what extent we want to prioritize
the individual components within 𝑃 .

3.5 Privacy vs. Utility Tradeoff
For a given anonymization model, speech privacy increases (𝑃 )
while the speech utility (𝑈 ) decreases. Therefore, there exists an op-
timum tradeoff between privacy and utility. The ideal

0 a

Utility

0

b

P
ri

v
ac

y

(U,P)

Figure 3: The typical relationship
between privacy and utility.

relationship between 𝑃 and
𝑈 forms an arc of an
eclipse [40] as shown in
Fig. 3. For the original
audio,𝐸𝑅𝑅𝑚𝑜𝑑𝑒𝑙 = 𝐸𝑅𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ,
𝐽 = 1, and 𝑊𝐸𝑅𝑚𝑜𝑑𝑒𝑙 =

𝑊𝐸𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , so 𝑃 = 0 and
𝑈 = 1. As the anonymiza-
tion model perturbs the au-
dio signal, 𝑃 increases (↑)
while 𝑈 decreases (↓). The
ideal anonymization solu-
tion would be for both privacy and utility to be at their maximum
possible levels. Therefore, there exists a point (𝑈 , 𝑃) where the 𝑃
and 𝑈 form a rectangle with the highest area (𝑃 ×𝑈 ); we define
this area measurement as the tradeoff between privacy and utility,
which is represented by Eq. 8.

𝑇 (𝑆, 𝐽 ,𝑈 ) = 𝑃 ×𝑈 = [𝛾𝑆 + (1 − 𝛾) (1 − 𝐽 )] ×𝑈 (8)

where 𝑆 , 𝐽 and 𝑈 ∈ [0, 1], 𝛾 ∈ (0, 1), and 𝑇 ∈ [0, 1]. 𝑇 equals 0 for
the original speech, and higher values of 𝑇 mean a better tradeoff
of privacy and utility for a given voice anonymization technique.
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Table 1: Common Voice English dataset summary.

Accents Alias # of samples # of speakers Length (hrs)

United States US 10000 2683 13.78
England EN 10000 1343 13.17

India and South Asia INSA 10000 1450 13.26
Canadian CA 10000 649 13.28
Australian AU 10000 534 12.98

New Zealand NZ 8514 138 10.80
Scottish SC 7995 141 11.13
Ireland IE 6052 164 7.93

Southern African SA 5794 112 3.26
Chinese CN 4887 285 10.74

4 INFERENCE & ANONYMIZATION MODELS
4.1 Datasets
We use three datasets to evaluate the feasibility and transferability
of the inference attack models as well as the voice anonymization
models. All datasets are resampled to 16kHz WAV files.
Mozilla CommonVoice (CV). The CV corpus [8] is a multilingual
collection of transcribed speech, which employs crowdsourcing for
data collection and validation. In this study, we use the CV English
Corpus 10.0, released on July 4, 2022. The metadata has more than
1.59 million validated utterances, including fields such as client ID,
audio transcription, upvotes, downvotes, age, gender, and accent.
We first filter out audio files missing annotation for age, gender, and
accent. Next, we drop samples with audio segments greater than
8 seconds to reduce the computation overhead and filter samples
where the gender annotation is labeled as ’other’. We follow the
original accents categories labeled in the CV dataset and consider
the top 10 accents with the highest number of speech utterances for
our analysis. The only exception is we relabel the Singapore and
Hong Kong accents as the Chinese (short for CN) accent as most
people in Singapore and Hong Kong are descendent of southern
Chinese. India and South Asia accents (INSA) include speakers
from India, Pakistan, and Sri Lanka. Southern African accents (SA)
consist of South Africa, Zimbabwe, and Namibia. We randomly
select 10,000 utterances from the top five majorities of accents (i.e.,
US, EN, INSA, CA, and AU) while keeping all the utterances for the
remaining five accents (i.e., NZ, SC, IE, SA, and CN). To this end,
we reduce the dataset to 110.3 hours consisting of 83,242 samples
(65,569 male utterances and 17,673 female utterances), as shown in
detail in Table 1. We label six classes of ages, including teens (<20
years old), twenties (20-29), thirties(30-39), forties (40-49), fifties
(50-59), and seniors (≥ 60). We randomly split the dataset into
the following portions 70:20:10 as train, validation, and test sets
for the age, accent, and gender inference models (as described in
Section 4.4).
IEMOCAP. The IEMOCAP corpus [14] comprises 5,531 utterances
from 10 speakers (5 male and 5 female). The actors performed se-
lected emotional scripts and improvised hypothetical scenarios
designed to elicit nine specific forms of emotions (e.g., happiness,
anger, sadness, and neutral state). In this study, we relabel excite-
ment samples as happiness (similar to what existing work has
done [51]) and used four emotional classes, including anger, hap-
piness, sadness, and neutral, for our inference model. The dataset
was randomly split into the following portions 80:10:10 as train,
validation, and test set for the emotion inference model.

Table 2: Performance of different ASR systems.
Model Source Language Dataset WER(%)

wav2vec2+CTC SpeechBrain English CV 14.50
CRDNN + CTC/Attention SpeechBrain English CV 25.90
DeepSpeech DeepSpeech English CV 27.09
Google Speech2Text Google Cloud English CV 28.19

wav2vec2+CTC SpeechBrain English IEMOCAP 24.57
CRDNN + CTC/Attention SpeechBrain English IEMOCAP 37.15
Google Speech2Text Google Cloud English IEMOCAP 37.76

wav2vec2+CTC SpeechBrain Mandarin Chinese AISHELL1-test 5.04
Transformer SpeechBrain Mandarin Chinese AISHELL1-test 6.04
Google speech2text Google Cloud Mandarin Chinese AISHELL1-test 7.69

AISHELL-1 (Mandarin Chinese). The AISHELL-1 database [13]
includes 400 people from different areas in China. The utterance
was recorded in a quiet indoor environment using high fidelity
microphone. We conduct the experiment using the default test set
containing 7,176 utterances from 20 speakers with gender informa-
tion. We use this dataset to evaluate model transferability across
English and Chinese speakers.

4.2 Transcription Utility
ASR performance is assessed using the test set from all three datasets.
As shown in Table 2, for the CV English dataset, we test four Speech-
To-Text engines, including the SpeechBrain’s [54] wav2vec2 + CTC
and CRDNN + CTC/Attentionmodels, DeepSpeech model [22], and
the commercial Google Speech-To-Text engine using US English
model. The wav2vec2 + CTC model [11] is trained on the audio of
Librispeech (LS-960), which uses a pretrained wav2vec 2.0 model
(wav2vec2-large-960h-lv60-self) combined with two DNN layers.
The obtained final acoustic representation is given to the Connec-
tionist Temporal Classification (CTC). The wav2vec2 + CTC model
obtained the lowest WER of 14.50% among all the four tested ASRs,
while Google Speech-To-Text performed the worst, with a WER
of 28.19%. However, since the CV dataset contains samples with
different accents, the WER is relatively higher. The IEMOCAP test
set has a higher WER of 24.57% using the wav2vec2 + CTC model.
We observe that emotional speech usually contains more modal
particles, which confuses the ASRs. The AISHELL1-test set in Man-
darin Chinese has a lower WER of 5.04% using the wav2vec2 +
CTC model trained on the AISHELL1-train set as the utterance was
recorded in a quiet indoor environment using high fidelity micro-
phone. Overall, we observe that the wav2vec2 + CTC model has
the lowest WER. Therefore, we adopt the wav2vec2 + CTC as our
speech-to-text engine to perform transcription evaluation for all
three datasets.

4.3 Speaker Verification
Current speaker verification systems (SVS) rely on a neural net-
work to extract speaker representations. The x-vector [59] archi-
tecture is a Time Delay Neural Network (TDNN) that applies statis-
tical pooling to project variable-length utterances into fixed-length
speaker-characterizing embeddings. The ECAPA-TDNN architecture,
subsequent improvement over the traditional TDNN model, outper-
forms state-of-the-art TDNN-based systems on the VoxCeleb [43]
test sets and the 2019 VoxCeleb Speaker Recognition Challenge
test sets [16]. We adopt a pre-trained ECAPA-TDNN model [17] for
speaker verification from the SpeechBrain Library [15]. This model
was trained using the Voxceleb1 [43], and Voxceleb2 [42] datasets.
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Table 3: Attributes inference performance. The emotion inference
model is trained and tested on IEMOCAP dataset while the other
threemodels including age, accent, and gender are trained and tested
on CV data.

Attributes Test set (# of utterances) wav2vec2 Base ECAPA-TDNN

Emotion happiness (167), anger (122)
sadness (113), neutral (149) 77.31% 65.15%

Age
teens (876), twenties (2,799)
thirties (1,703), forties (1,601)
fifties (783), senior (563)

85.36% 80.95%

Accent
AU (969), NZ (872), CN (480), SA (609)
INSA (1,006), CA (1,005), EN (1,013)
IE (630), SC (797), US (944)

87.72% 82.10%

Gender male (6,562), female (1,763) 99.06% 97.87%

Speaker verification itself is performed using cosine similarity be-
tween extracted speaker embeddings. We measure two metrics for
speaker verification, including speaker verification accuracy and
EER. Here, we adopt the default similarity score of 0.25 from the
original model as the threshold to decide if two utterances are the
same or not, while EER is the measurement with a threshold score
when the false positive rate equals to false reject rate. For each
dataset, we randomly generate 10,000 pairs of utterances (half pairs
belong to the same speaker and half are not) to evaluate the speaker
verification.

4.4 Attribute Inference Models
Inference model selection. Most recently, speech representa-
tion learning networks such as wav2vec2 [11] and ECAPA-TDNN
[17] have shown their advantage in speech recognition [71] and
speaker recognition [68] over existing approaches like i-vector
[21] and x-vector [59]. Furthermore, these representation learn-
ing models have also been applied in other domains, including
speech anonymization [19], language detection [58], and emotion
identification [41]. We, therefore, apply both wav2vec2 [11] and
ECAPA-TDNN [17] architecture to train the emotion, age, accent, and
gender inference models. We use the BASE wav2vec2 structure,
in which the convolutional layer has a kernel size of 128 and 16
blocks. The model input dimension is 768 with the inner dimension
3,072 [11]. We train 60 epochs for each wav2vec2 model with a
batch size of 32. The ECAPA-TDNN architecture consists of blocks
of TDNNs and Squeeze-and-Excite (SE) layers unified with blocks
of Res2Block layers, and each convolutional frame layer has 512
channels. We train 300 epochs for each ECAPA-TDNN model with a
batch size of 32.

Table 3 shows that the accuracy of the wav2vec2model is 77.31%,
85.36%, and 87.94% and 99.06% (female 98.30%,male 99.27%), for emo-
tion, age, accent, gender prediction, respectively. In contrast, the
corresponding accuracy of the ECAPA-TDNNmodel is 65.15%, 80.95%,
82.10%, and 97.87% (female 96.60%, male 98.25%) for emotion, age,
accent, gender prediction, respectively. Thus, the wav2vec2 model
shows its overall advantage. However, the wav2vec2 model has
around 90.2 million trainable parameters, whereas the ECAPA-TDNN
only has around 5.5million trainable parameters. Thus, the wav2vec2
model requires significantly more computing resources than the
ECAPA-TDNN model. The inference accuracy for age and gender is
slightly better (<5%) for wav2vec2 compared to ECAPA-TDNN, while

Table 4: State-of-the-art of voice anonymization models.

Model Type Pre-training Overhead

McAdams [49] Signal processing × Low
VoiceMask [53] Signal processing × Low
HiFi-GAN [35] Voice synthesis × High
MaskCycleGAN [31] Voice conversion ✓ Medium
V-CLOAK [5] Voice adversarial example ✓ Low

the inference accuracy of emotion and accent is significantly differ-
ent (>5%). Therefore to reduce the computing burden while main-
taining reasonable accuracy for inferring emotion and accent, we
use the wav2vec2 model, while for gender and age prediction, we
use the ECAPA-TDNN model for our evaluation.
Emotion labeling for the CV Dataset. Due to the lack of emo-
tional states in the CV dataset, we use the trained wav2vec2 model
on the IEMOCAP data to infer the emotional state as the baseline,
which will be used to compare the emotional state after applying the
voice anonymization models. Even though the emotional inference
model is imperfect, it will still enable us to understand the general
trend after applying the different voice anonymization techniques
to determine the optimal operating region.

4.5 Voice Anonymization Models
To protect the identity of the users of voice input, we implemented
five state-of-the-art privacy-preserving models shown in Table 4,
many of which have been used as baselines in the 2022 Voice Pri-
vacy Challenge [64]. These models modify a source speaker’s voice
so that it sounds like another target speaker without changing the
language contents. We consider four types of voice anonymization
methods, including voice signal processing (SP) [49, 53], voice syn-
thesis (VS) [35], voice conversion (VC) [31], and adversarial exam-
ple [5]. McAdams [49], and VoiceMask [53] are SP-based methods
that directly apply signal processing techniques to modify speaker-
related features in the audio signals to obscure voiceprints. HiFi-
GAN [35] is a VS-based GAN network that converts the transcript
to a target speaker’s voice. MaskCycleGAN-VC [31] translates one
voice into another target. V-CLOAK [5] transfers the speaker’s
voice to an adversarial voice example.
McAdams. McAdams coefficient [49] can be used to adjust the
frequency of each harmonic, as shown below:

𝑋 (𝑡) =
𝐾∑︁
𝑘=1

𝐴𝑘 (𝑡) cos (2𝜋 (𝑘 𝑓0)𝛼 + 𝜙𝑘 ) (9)

where 𝑘 is the harmonic index, 𝐴𝑘 (𝑡) is signal amplitude, 𝜙𝑘 is the
phase, and 𝛼 is the McAdams coefficient, which is usually in the
range of [0.5, 1]. The speech loses intelligibility when 𝛼 < 0.5, while
the anonymization is significantly low when 𝛼 > 1. Adjustments
to the distribution of harmonics act to modify the resulting timbre.
VoiceMask. VoiceMask [53] is a Vocal Tract Length Normalization
(VTLN) based approach that aims to compensate for the effects of
different vocal tract lengths by warping the frequency spectrum
in the filter bank analysis. Given a source utterance, VTLN-based
voice conversion processes it in six steps: pitch marking, frame
segmentation, FFT (fast Fourier transform) to the frequency domain,
VTLN, IFFT (inverse fast Fourier transform) to the time domain,
PSOLA (pitch-synchronous overlap and add). Pitch marking and
frame segmentation aim to split the speech signal into frames that
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match the pseudo-periodicity of the voiced sounds as determined by
the fundamental frequency of the voice to output a synthetic voice
with the best audio quality. VTLN modifies the spectrum of each
frame using frequency warping, that is, stretching or compressing
the spectrum with respect to the frequency axis according to a
warping function. VoiceMask implemented two popular warping
functions including bilinear function [53, 61] (noted as VoiceMask𝛼 )
and quadratic function [61] (noted as VoiceMask𝛽 ). The bilinear
warping function is shown below:

𝜑𝛼 = 𝜔 + 2 arctan−1 ( (1 − 𝛼) sin𝜔
1 − (1 − 𝛼) cos𝜔 ) (10)

where 𝜔 ∈ [0, 𝜋] is the normalized frequency, and 𝛼 ∈ (−1, 1) is a
warping factor used to tune the strength of voice conversion. The
quadratic function [61] is represented by the equation given below:

𝜑𝛽 = 𝜔 + 𝛽 (𝜔
𝜋

− (𝜔
𝜋
)2) (11)

where 𝛽 ∈ (−1, 1). To design a mechanism that ensures the attacker
cannot reverse or reduce voice conversion, we propose randomizing
the warping coefficients 𝛼 and 𝛽 within a specific range.
HiFi-GAN. HiFi-GAN [35] is a generative adversarial network
(GAN) to synthesize high-fidelitywaveforms fromMel-spectrograms.
First, the Tacotron2 [56]model is used to generate theMel-spectrogram
based on the speech text, then a HiFI-GAN vocoder trained with
LJSpeech [26] takes the Mel-spectrogram and produces a waveform
in output. As most VAs have a female voice by default, we convert
all the utterances using a female vocoder.
MaskCycleGAN-VC. Voice conversion (VC) is a technique for
translating one voice into another without changing the linguistic
content and has been extensively studied. MaskCycleGAN-VC [31]
is a non-parallel VC technique that applies a temporal mask to the
input mel-spectrogram and fills in the missing frames based on
the surrounding frames to train voice converters without a parallel
corpus.

We follow the default training setting of MaskCycleGAN-VC
[31] to train the VC models. We randomly selected 20 speakers
from the CV data, with 240 utterances for each speaker. We used
combinations of 10 pairs of source-target for the evaluation. For
each speaker, we used 80 sentences for training and 140 sentences
for the evaluation. Note that the training set contains no overlap-
ping utterances between the source and target speakers, and the
pair between the source and target speakers have different gender,
age, and accent.
V-CLOAK: V-CLOAK [5] is a generative model-based anonymizer
based onWave-U-Net [60]. By adding imperceptible noises to audio,
V-CLOAK generates adversarial examples so that an ASV system
cannot recognize the speaker. V-CLOAK optimizes the intelligi-
bility, naturalness, and timbre of the audio without retraining the
anonymizer. This means V-CLOAK can be trained on data from
one language and be applied to samples from another language
without losing much intelligibility. V-CLOAK was trained on train-
clean-100, and train-other-500 datasets in LibriSpeech [48] with the
adding noises level of 0.1. We trained 80 epochs with a batch size
of 16 to achieve 16.3% WER on the test-clean of the LibriSpeech
dataset, which is close to the 13.92% reported in the paper [5]. We
use this trained model to transfer our test data in the evaluation.
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Figure 4: Privacy and utility tradeoff relationship for different voice
anonymization models.

5 EVALUATION
In this section, we comprehensively analyze VoicePM under various
settings to evaluate howwell VoicePM meets three design objectives:
preserve transcription utility, hinder speakers’ voice biomet-
rics, and thwart voice attribute inference. First, we empirically
validate the privacy and utility tradeoff model in §5.1. We then
evaluate how the tradeoff model parameter (𝛾 ) impacts the opti-
mum tradeoff point in §5.2. Next, we analyze the attribute inference
accuracy for different models in §5.3 and determine the optimum
coefficients for voice anonymization models in §5.4. We evaluate
the impact of stochastic anonymization in §5.5 and provide the
overall performance in §5.6. We also evaluate the run-time of the
different voice anonymization models in §5.7. Finally, we examine
the sensitivity of our system by analyzing the impact of the fol-
lowing factors: generalizability across English datasets (§5.8), and
transferability between English and Chinese speakers (§5.9). We
use the Common Voice (CV) dataset by default unless mentioned
otherwise.

5.1 Privacy vs. Utility Tradeoff Relationship
In this section, we determine how our proposed privacy and utility
metrics vary to justify our choice of the tradeoff metric (Eq. 8) as
we discussed in Sec. 3.4. We plot the privacy (𝑃 ) and utility (𝑈 )
metrics for McAdams, VoiceMask𝛼 , and VoiceMask𝛽 with varying
coefficients in Fig.4. The figure demonstrates that 𝑃 and𝑈 approx-
imately form a non-linear pattern like an arc, as shown in Fig. 3.
This also implies that there exists a point (𝑈 , 𝑃) on the arc where
the tradeoff is optimum.

5.2 Determining the Impact of 𝛾 on Tradeoff
The weight of 𝑆 and 𝐽 is determined by the 𝛾 value, and we examine
how it affects the optimal tradeoff in this section. As shown in Eq. 7,
we calculate the privacy (𝑃 ) metric as the weighted average of 𝑆
and 𝐽 . To determine the proper value of 𝛾 , we plot the tradeoff
metric (𝑇 ) for McAdams, VoiceMask𝛼 , and VoiceMask𝛽 for varying
different coefficient value for each model as shown in Fig. 5. The
plots show that the tradeoff metric increases with the value of 𝛾 .
However, the warping coefficient for the three models’ optimum
tradeoff stays mostly the same when 𝛾 equals 0.3, 0.5, 0.7, and 0.9.
Specifically, McAdams has an optimum tradeoff with a coefficient of
0.75. VTLN linear warping (VoiceMask𝛼 ) has an optimum tradeoff
with a warping coefficient of 0.14, while VTLN quadratic warping
(VoiceMask𝛽 ) has a peak tradeoff with a warping coefficient of
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Figure 5: Tradeoff measurement with varying 𝛾 . The warping coefficient for the three models’ optimum tradeoff stays mostly the same.
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Figure 6: Inference of different voice attributes using different voice
anonymization techniques.
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Figure 7: Distribution of 𝑈 , 𝑃 , and 𝑇 with varying coefficient for
McAdams and VoiceMask approach.

around 0.55. We see the optimum point does not change much
when 𝛾 ∈ [0.3, 0.9]. In this study, we consider that 𝑆 and 𝐽 have the
same weight and, thus, pick 𝛾 = 0.5 for the following evaluation in
the paper.

5.3 Voice Attribute Inference
We now determine to what extent the inference capabilities are
impacted by varying the parameters of McAdams and VoiceMask
models. Figure 6a and 6b show the accuracy of inferring gender,
age, accent, and emotional state, along with the 𝐽 metric. With the
increase of the McAdams coefficient from 0.5 to 0.9, McAdams does
not change gender inference significantly, while the inference accu-
racy for accent, age, and emotion varies significantly. Specifically,
the gender inference accuracy changes from 78.60% to 96.89%, the
accent inference increases from 12.02% to 83.41%, the age inference
increases from 19.29% to 51.23%, and the emotional state inference
rises from 25.69% to 85.61%. With the increase of the VTLN warping
coefficient, VoiceMask𝛼 does not significantly decrease the accuracy

of emotional state inference (<20%). We also see that 𝐽 consistently
follows the overall change in inference accuracy. From a privacy
point of view, a smaller value of 𝐽 is desirable.

5.4 Tradeoff and Optimum Coefficient
In this section, we determine if our proposed tradeoff metric can
obtain an optimum co-efficient consistent with existing results. Fig.
7a and 7b shows the plot between 𝑈 , 𝑃 and 𝑇 for McAdams and
VoiceMask𝛼 (VoiceMask𝛽 shows similar pattern as VoiceMask𝛼 ).
McAdams achieves the peak tradeoff of 0.5704 (EER = 14.99%, 𝐽 =
0.6014, WER = 26.45%, 𝑈 = 0.8602, and 𝑃 = 0.6232) with the coeffi-
cient of 0.75. The tradeoff plot has a plateau when the McAdams
coefficient lies in the range of 0.7 and 0.8, as shown in Fig. 5a. The
VoicePrivacy challenge 2020 [65] set a fixed coefficient of 0.8 for
McAdams, and existing work by Patino et al. [49] experimented
with different ranges of McAdams coefficient (e.g., 𝛼 ∈[0.7, 0.9] and
𝛼 ∈[0.5, 0.9]) but do not conclude which range performs the best
for both EER and WER.

Fig. 7b shows that the optimum tradeoff of 0.6114 for VoiceMask𝛼
(EER = 22.11%, 𝐽 = 0.4110, WER = 29.63%,𝑈 = 0.8230, and 𝑃 = 0.7429)
with |𝛼 | = 0.14. We also found the optimum tradeoff of 0.5884 for
VoiceMask𝛽 (EER = 23.39%, 𝐽 = 0.4788, WER = 29.32%, 𝑈 = 0.8266,
and 𝑃 = 0.7118) with a |𝛽 | = 0.55. VoiceMask [53] set the range of
|𝛼 | ∈ [0.08, 0.10] in the bilinear function to maintain a speech recog-
nition accuracy in the range of [0.72, 0.75] while |𝛽 | ∈ [0.4, 0.6] in
the quadratic function to maintain speech recognition accuracy in
the range of [0.77, 0.81] by leveraging the LibriSpeech dataset [48].
We see our optimum coefficients differ from the existing works,
which determine a range based on EER andWER. However, VoicePM
considers different voice attributes and can automatically detect
the optimum coefficient and determine the optimum range based
on the tradeoff analysis.

5.5 Stochastic Anonymization
If an adversary knows the anonymizer but does not know the exact
coefficient, a fixed and deterministic coefficient could be reverse-
engineered to recover the original voice. We adopt a stochastic
approach to randomize the coefficient from a uniform distribution,
i.e., 𝛼 ∈ [𝛼𝑚𝑖𝑛, 𝛼𝑚𝑎𝑥 ] per session. As shown in Fig. 7a and 7b,
we observe the tradeoff settles on a plateau when the coefficient
of McAdams and 𝑉𝑜𝑖𝑐𝑒𝑀𝑎𝑠𝑘𝛼 in the range of [0.7, 0.8] and [0.13,
0.15], respectively. Therefore, we randomize the coefficient in these
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Table 5: Performance of different voice anonymization models.

Model Emotion (%) Age (%) Accent (%) Gender(%) Jaccard Speaker Acc (%) EER (%) WER (%) S J U P T

Baseline 100 80.95 87.94 97.87 0.8534 97.45 2.28 14.50 0.0000 1.0000 1.0000 0.0000 0.0000
McAdams 76.07 35.24 62.96 90.14 0.5386 71.04 18.39 26.42 0.8055 0.6311 0.8606 0.5872 0.4971
VocieMask𝛼 71.97 37.25 49.89 50.67 0.4038 62.53 20.58 27.92 0.8166 0.4731 0.8431 0.6717 0.5558
VocieMask𝛽 71.70 36.34 54.20 67.45 0.4534 66.14 20.85 28.15 0.8178 0.5313 0.8404 0.6432 0.5303
HiFi-GAN 40.50 19.39 12.13 24.28 0.1561 50.06 48.32 17.44 0.9528 0.1829 0.9656 0.8849 0.8545
MaskCycleGAN 36.18 24.21 19.32 40.25 0.2056 51.21 39.95 72.12 0.9429 0.2410 0.3261 0.8510 0.2775
V-CLOAK 60.54 25.13 51.08 81.26 0.4107 50.02 52.79 23.81 0.9568 0.4812 0.8911 0.7378 0.6574
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Figure 8: Overall performance for different voice anonymization
techniques.

ranges for each utterance. By doing so, the adversary would have
to know the exact coefficient used to anonymize the speech of any
particular session to revert the conversion. To evaluate the stability
of the proposed stochastic anonymization, we compute the tradeoff
metric across ten runs using CV test set. The result shows that
the standard deviation of the tradeoff metric is 0.0010, 0.0005, and
0.0011 for McAdams, 𝑉𝑜𝑖𝑐𝑒𝑀𝑎𝑠𝑘𝛼 , and 𝑉𝑜𝑖𝑐𝑒𝑀𝑎𝑠𝑘𝛽 , respectively.
We also observe similar small standard deviations for other metrics
such as 𝑆 , 𝐽 ,𝑈 , and 𝑃 . We list the average value in Table 5.

5.6 Overall Performance
Fig. 8 plots the𝑈 , 𝑃 , and𝑇 for all fivemodels (details of othermetrics
are listed in Table 5). For the signal processing-based approaches,
McAdams (𝑈 = 0.8606, 𝑃 = 0.5872, 𝑇 = 0.4971) slightly performs
worse than VoiceMask. VoiceMask𝛼 (𝑈 = 0.8431, 𝑃 = 0.6717, 𝑇 =
0.5558) has overall better performance in𝑈 and 𝑃 than VoiceMask𝛽
(𝑈 = 0.8404, 𝑃 = 0.6432, 𝑇 = 0.5303). HiFi-GAN performs with the
best tradeoff (𝑇 = 0.8545) among all five anonymizers, followed
by V-CLOAK with a tradeoff of 0.6574. MaskCycleGAN preserves
the highest privacy (𝑃 = 0.8510), but its utility (𝑈 = 0.3261) has
the worst performance, resulting in the worst tradeoff (𝑇 = 0.2775).
The reason is that its WER is as high as 72.12%. Recent work [33]
trained and tested Cycle-GAN based voice converter [32] on Lib-
rispeech data, which showed that the WER is around 70% while
significantly not improving with synthetic speech data augmen-
tation. The CycleGAN networks can convert one speaker’s voice
to another to successfully impersonate the target. However, it is
still challenging to make the converted voice more intelligible and
recognizable by ASRs. The WER for McAdams, VoiceMask, HiFi-
GAN, and V-CLOAK is less than 30%. VoicePM takes advantage of
the normalized 𝑈 to evaluate the utility, which shows 𝑈 is greater
than 0.84. A clean speech dataset would result in a lower WER.
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Figure 9: Run time required by different voice anonymization tech-
niques for different length of utterance.

5.7 Runtime Overhead
We ran VoicePM in an AMD Opteron (TM) 6128 2 GHz Processor
with 32 GB RAM to test the real-time coefficient (RTC), which
computes the ratio between the run time to anonymize the audio
and the duration of the original audio. As the total CPU time is
proportional to the duration of the utterance, we performed a linear
function to fit the runtime. Fig.9 shows the CPU time for the six
algorithms for the utterance duration from 1 to 8 seconds. The
result shows that the runtime for the two VTLN-based approaches
(VoiceMask) minimally increases linearly with a coefficient of 0.001,
while the runtime for McAdams increases linearly with a coeffi-
cient of 0.041. HiFi-GAN takes one to two orders of magnitude
longer than the signal processing-based approaches (e.g., VTLN
and McAdams) with a linear coefficient of 0.4877. MaskCycleGAN
increases linearly with a coefficient of 0.213, while V-CLOAK in-
creases linearly with a coefficient of 0.012. The result demonstrates
that signal processing-based approaches and adversarial examples
take significantly less runtime.

5.8 Generalizability across Datasets
We use the IEMOCAP test set with gender and emotion state infor-
mation to evaluate the generalizability of VoicePM when trained
using the CV dataset. We keep the same ASR system, attribute infer-
ence models (i.e., only for gender and emotion), speaker verification
model, and anonymization models. Due to MaskCycleGAN’s poor
performance (i.e., low utility), we drop this model for cross-dataset
evaluation. Fig. 10a show that both datasets have a similar rank-
ing from the highest tradeoff to the lowest tradeoff (HiFi-GAN ->
VoiceMask𝛼 -> V-CLOAK -> VoiceMask𝛽 ->McAdams). Detail listed
in Table 6 in Appendix A. We also changed the 𝛾 parameter from
0.5 to 0.75 to see if the relative ranking changes. Fig. 10b shows
that all the tradeoff points rise, but the overall relative ranking does
not change across different 𝛾 values. Our design enables users to
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Figure 10: Generalizability of tradeoff across different dataset with (a) 𝛾 = 0.5 and (b) 𝛾 = 0.75. (c) Transferability of tradeoff metric across
speakers of different languages with 𝛾 = 0.5.

select a suitable 𝛾 value based on their preference. For instance, if
the weight of S and 𝐽 is considered equal, 𝛾 = 0.5 can be used, while
a larger 𝛾 value indicates a higher weight on 𝑆 (i.e., hiding speaker
recognition).

5.9 Transferability across Different Languages
Next, we use the AISHELL1 Chinese Mandarin dataset to evaluate
VoicePM performance across speakers of different languages. We
keep all settings as §5.8 but only use a trained Chinese Mandarine
vocoder [35] for the ASR. As the AISHELL1 dataset only have
gender attribute, the Jaccard similarity only considers gender. Our
baseline gender accuracy is 91.38% by using the same inference
model trained on the CV dataset. Fig. 10c shows the tradeoff plot
between CommonVoice and AISHELL1 test set. Table 7 in Appendix
A lists the detailed measurement. The relative tradeoff ranking in
Fig. 10c is different from that of Fig. 10a, and this can be attributed
to two factors. Firstly, all models, including attribute inference
and anonymization models, were trained and validated using the
English language, not Chinese (thus, highlighting the impact of
transfer learning). Secondly, the privacy (𝑃 ) of the Chinese dataset
was heavily influenced by the accuracy of gender inference as
that was the only attribute available for the AISHELL1 dataset.
A Chinese dataset with more labeled attributes (e.g., age, accent,
and emotion attributes) could potentially lead to better privacy
representation, thus, a higher tradeoff value. For example, V-CLOAK
and HiFi-GANmethods had higher gender inference accuracy using
the Chinese dataset than the English dataset, resulting in lower
privacy (𝑃 ). As 𝑇 = 𝑈 × 𝑃 , 𝑇 ends with a significant drop in the
Chinese AISHELL1 dataset.

6 DISCUSSION
Our evaluation shows that different anonymization models can
hide emotion, age, accent, and gender to different degrees. For
example, VoiceMask𝛼 can reduce the gender inference accuracy
around or below 50%, which is lower than a random guess, and
V-CLOAK can reduce the age inference accuracy from the baseline
accuracy of 80.95% to 25.13%. HiFi-GAN can normalize target speak-
ers with a fixed gender, accent, age group, and neutral emotional
state. Anonymization models with varying privacy levels can be
pre-defined. VoicePM can enable vendors to design a privacy con-
figuration (i.e., privacy settings) to allow users to hide their voice
attributes at different levels.

Feasibility for Attributes Configuration. We list the tradeoff
measurement of all possible 16 combinations from four-voice at-
tributes: emotion, age, accent, and gender in Table 8 (Appendix
A). VoicePM can provide a tradeoff rank for each combination. For
example, if the user wants to hide the {emotion} attribute alone,
VoicePM would recommend HiFi-GAN, which has the best trade-
off (𝑇 = 0.6748), followed by V-CLOAK with a tradeoff of 0.557
(with a lower computational overhead). VoicePM can consider many
anonymized models. Thus, VoicePM can provide a better solution
with a higher tradeoff based on the user’s privacy configuration
and system computation capability.
Limitations. First, we have tried our best to implement the state-
of-the-art attribute inference models. However, the accuracy of the
emotion and age inference model is relatively low. VoicePM could
be updated with newer models once more advanced models are
available. Second, we use the self-reported binary gender label from
CV dataset. We removed the ’other’ gender label due to its small
portion of data. In addition, the reported gender identity could
differ from the biological determinants of sex. These might degrade
the performance of the gender inference model if many such audio
samples are included in the train or test set. Thirdly, we limited our
analysis to audio files of less than 8 seconds due to computation
constraints. Lastly, our analysis lacks human perception verification
of the altered audio, which we leave as future work.

7 CONCLUSION
In this paper, we build and evaluate voice attribute inference models,
including emotion, age, accent, and gender, by adopting the latest
speech representation learning networks, such as wav2vec2 and
ECAPA-TDNN. We then develop a novel voice privacy measurement
tool VoicePM , to first explore and evaluate the tradeoff of privacy
and utility for state-of-the-art voice anonymizers. We extensively
evaluate using three datasets and develop tradeoff metrics to study
the feasibility of existing anonymization approaches. Our experi-
ments show that VoicePM can effectively measure the tradeoff of
different anonymization models for a larger set of voice attributes.
VoicePM has the potential to foster the design of privacy settings
for emerging voice assistants.
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APPENDIX
A PERFORMANCE OF DIFFERENT VOICE

ANONYMIZATION MODELS

Table 6: Performance of different voice anonymization models on
the IEMOCAP dataset.
Model Gender (%) Emotion (%) Jaccard Speaker Acc (%) EER (%) WER (%) S J U P T

Baseline 81.49 77.31 0.7399 97.10 0.10 24.57 0.0000 1.0000 1.0000 0.0000 0.0000
McAdams 63.16 66.42 0.5717 80.00 10.50 39.04 0.9905 0.7727 0.8082 0.6089 0.4921
VocieMask𝛼 38.84 65.70 0.4325 70.90 13.20 44.77 0.9924 0.5846 0.7323 0.7039 0.5155
VocieMask𝛽 51.18 64.61 0.4985 67.00 16.00 46.39 0.9938 0.6738 0.7107 0.6600 0.4691
HiFi-GAN 43.19 23.77 0.2577 50.40 48.70 27.62 0.9979 0.3483 0.9595 0.8248 0.7914
V-CLOAK 59.17 69.15 0.5650 52.40 39.80 36.75 0.9975 0.7637 0.8386 0.6169 0.5173

Table 7: Performance of different voice anonymization models on
the AISHELL-1 (Mandarin Chinese) dataset.
Model Gender (%) Jaccard Speaker Acc (%) EER (%) WER (%) S J U P T

Baseline 91.39 0.9139 82.76 0.97 5.04 0.0000 1.0000 1.0000 0.0000 0.0000
McAdams 75.85 0.7585 77.64 19.93 13.51 0.9513 0.8300 0.9108 0.5607 0.5107
VocieMask𝛼 44.38 0.4438 60.32 28.96 10.38 0.9665 0.4857 0.9437 0.7404 0.6988
VocieMask𝛽 68.27 0.6827 56.09 41.53 9.74 0.9766 0.7470 0.9505 0.6148 0.5844
HiFi-GAN 50.39 0.5039 47.20 54.11 10.87 0.9821 0.5514 0.9386 0.7153 0.6714
V-CLOAK 66.29 0.6629 50.00 50.70 10.35 0.9809 0.7254 0.9441 0.6277 0.5926

Table 8: Tradeoff with various attributes selection. VoicePM would
recommend the anonymization model with a higher tradeoff based
on user’s configuration.

Attributes
McAdams
(U=0.8466)

VoiceMask𝛼
(U=0.8274)

VocieMask𝛽
(U=0.8245)

HiFi-GAN
(U=0.9130)

MaskCycleGAN
(U=0.3261)

V-CLOAK
(U=0.8911)

P T P T P T P T P T P T

basic privacy 0.4431 0.3752 0.4488 0.3714 0.4493 0.3704 0.4764 0.4350 0.4715 0.1538 0.4784 0.4263
emotion 0.5066 0.4289 0.5420 0.4484 0.5399 0.4451 0.7391 0.6748 0.7595 0.2477 0.6237 0.5557
age 0.7634 0.6463 0.7562 0.6257 0.7627 0.6288 0.8628 0.7878 0.8296 0.2706 0.8312 0.7406
accent 0.5878 0.4976 0.6798 0.5625 0.6529 0.5383 0.9053 0.8266 0.8583 0.2799 0.6791 0.6052
gender 0.4189 0.3547 0.6803 0.5628 0.5729 0.4723 0.8342 0.7616 0.7356 0.2399 0.5023 0.4476
emotion+accent 0.5900 0.4996 0.6609 0.5468 0.6436 0.5306 0.8638 0.7886 0.8445 0.2754 0.7015 0.6251
emotion+age 0.6936 0.5872 0.7040 0.5825 0.7081 0.5838 0.8438 0.7704 0.8373 0.2731 0.7835 0.6981
emotion+gender 0.4924 0.4169 0.6612 0.5471 0.5981 0.4931 0.8264 0.7545 0.7861 0.2564 0.6018 0.5363
age+accent 0.7265 0.6151 0.7651 0.6331 0.7566 0.6237 0.9105 0.8313 0.8744 0.2852 0.8024 0.7149
gender+accent 0.5428 0.4596 0.7286 0.6029 0.6579 0.5424 0.8985 0.8203 0.8363 0.2727 0.6386 0.5690
gender+age 0.6548 0.5544 0.7643 0.6324 0.7196 0.5933 0.8823 0.8056 0.8264 0.2695 0.7312 0.6515
emotion+age+accent 0.6889 0.5832 0.7275 0.6020 0.7208 0.5943 0.8825 0.8058 0.8624 0.2812 0.7797 0.6948
emotion+accent+gender 0.5577 0.4722 0.7013 0.5803 0.6503 0.5361 0.8731 0.7971 0.8337 0.2719 0.6655 0.5930
emotion+age+gender 0.6347 0.5373 0.7274 0.6019 0.6939 0.5721 0.8620 0.7871 0.8296 0.2706 0.7257 0.6466
gender+age+accent 0.6611 0.5597 0.7679 0.6354 0.7283 0.6005 0.9047 0.8260 0.8569 0.2795 0.7431 0.6622
emotion+age+accent+gender 0.6454 0.5464 0.7393 0.6117 0.7072 0.5830 0.8849 0.8080 0.8510 0.2775 0.7378 0.6574
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